Understanding Land-atmosphere Coupling in the Warm Season

Alan K. Betts
akbetts@aol.com
http://alanbetts.com

Co-authors:
Ray Desjardins, Devon Worth
Agriculture and Agri-Food Canada
Brian Beckage UVM
Ahmed Tawfik NCAR
Anton Beljaars, ECMWF

AGU Session A11N, 8:00am
Dec. 15, 2014
14 Prairie stations: 1953-2011

- **Hourly** p, T, RH, WS, WD, **Opaque Cloud** by level, (SW_{dn}, LW_{dn})
- **Daily** precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)
References

http://alanbetts.com
Methods: Analyze Coupled System

- **Seasonal diurnal climate by station/region**
- **220,000 days, excellent data (600 station-years)**
- Impact of reflective/opaque cloud on diurnal cycle in summer and winter
 - Calibrate “cloud radiative forcing”
- Climate coupling between Precip, cloud, T and RH
 - monthly to seasonal
- Diurnal coupling in summer
 - RH, wind, day/night cloud asymmetry, precip anomalies
Diurnal Climate

• Reduce hourly data to
 – daily means: T_m, RH_m, OPAQ$_m$ etc
 – data at max/min: T_x and T_n

• **Diurnal cycle climate**

 • DTR = $T_x - T_n$
 • $\Delta RH = RH_{tn} - RH_{tx}$

• **Almost no missing hourly data**
 (*until recent government cutbacks*)
Surface Radiation Budget

- \(R_{\text{net}} = SW_{\text{net}} + LW_{\text{net}} \)

Define Effective Cloud Albedo (reflection)

- \(ECA = \frac{(SW_{dn(\text{clear})} - SW_{dn})}{SW_{dn(\text{clear})}} \)

 \text{Clear sky}

- \(SW_{\text{net}} = (1 - \alpha_s)(1 - ECA) SW_{dn(\text{clear})} \)

 \text{Reflected by surface, MODIS, clouds Calibrate Opaque Cloud data with BSRN}
Prairie has 2 climates

T > 0°C

T < 0°C
Warm Season Climate: $T > 0^\circ C$
No snow: April - October

- Hydrometeorology
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
Diurnal Temperature Range

Warms in daytime and cools at night

- Daytime warming related to clouds: ECA
- Night-time cooling related to clouds: LW_{net}
BSRN: ECA, LW_n, DTR and ΔRH coupled
Calibrate Opaque Cloud to BSRN ECA and LW_n

$$ECA = 0.06(\pm 0.08) + 0.002(\pm 0.002) OPAQSW + 0.0065(\pm 0.0002) OPAQSW^2 \quad (R^2=0.87)$$

$$LW_n = -129(\pm 8) + 2.8(\pm 0.2) OPAQ_m + 0.45(\pm 0.02) OPAQ_m^2 + 0.49(\pm 0.01) RH_m \quad (R^2=0.91)$$

$$LW_n = -89(\pm 10) + 4.6(\pm 0.3) OPAQ_m + 0.26(\pm 0.03) OPAQ_m^2 + 0.86(\pm 0.03) T_m \quad (R^2=0.82)$$
Regression fits to Opaque Cloud

Daily data: warm season, $T_m > 0$ (to ±0.08)
Opaque cloud gives ECA, $LW_n \rightarrow R_n$
Monthly, Seasonal, 50-yr Climate

- **Observables**
- **Opaque/reflective cloud** → R_n
- **Precipitation+Drydown** → Evaporation

- 50-yr timescale see separation
 - RH to precipitation and soil moisture
 - T to opaque cloud and R_n

- **Monthly, seasonal timescale blended**

Monthly timescale: Regression

\[
\delta \text{DTR} = K + A \delta \text{Precip(Mo-2)} + B \delta \text{Precip(Mo-1)} + C \delta \text{Precip} + D \delta \text{OpaqueCloud}
\]

(Month-2) (Month-1) (Month) (Month)

\(\delta \text{DTR} \) anomalies

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>(R^2) All</th>
<th>(R^2) Precip</th>
<th>(R^2) Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0 ± 0.8</td>
<td>-0.37 ± 0.05</td>
<td>-0.37 ± 0.04</td>
<td>-1.10 ± 0.05</td>
<td>0.73</td>
<td>0.41</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>0 ± 0.7</td>
<td>-0.30 ± 0.03</td>
<td>-0.32 ± 0.02</td>
<td>-0.97 ± 0.04</td>
<td>0.69</td>
<td>0.42</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>0 ± 0.7</td>
<td>-0.20 ± 0.03</td>
<td>-0.25 ± 0.02</td>
<td>-0.33 ± 0.03</td>
<td>-1.10 ± 0.05</td>
<td>0.67</td>
<td>0.42</td>
<td>0.48</td>
</tr>
<tr>
<td>Aug</td>
<td>0 ± 0.7</td>
<td>-0.07 ± 0.02</td>
<td>-0.21 ± 0.03</td>
<td>-0.40 ± 0.03</td>
<td>-1.24 ± 0.04</td>
<td>0.79</td>
<td>0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>Sept</td>
<td>0 ± 0.8</td>
<td>-0.22 ± 0.03</td>
<td>-0.49 ± 0.04</td>
<td>-1.27 ± 0.04</td>
<td>0.82</td>
<td>0.43</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>0 ± 0.8</td>
<td>-0.27 ± 0.03</td>
<td>-0.70 ± 0.07</td>
<td>-1.33 ± 0.04</td>
<td>0.77</td>
<td>0.37</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>
Monthly timescale: Regression

\[\delta RH_{tx} = K + A \delta\text{Precip}(Mo-2) + B \delta\text{Precip}(Mo-1) + C \delta\text{Precip} + D \delta\text{OpaqueCloud} \]

Afternoon \(\delta RH_{tx} \) anomalies

<table>
<thead>
<tr>
<th>Month</th>
<th>K</th>
<th>A (Mo-2)</th>
<th>B (Mo-1)</th>
<th>C (Mo)</th>
<th>D</th>
<th>(R^2)</th>
<th>(R^2)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\pm 3.6)</td>
<td>(\pm 0.38)</td>
<td>(\pm 0.22)</td>
<td>(\pm 0.17)</td>
<td>(\pm 0.20)</td>
<td>(0.72)</td>
<td>(0.46)</td>
<td>(0.62)</td>
</tr>
<tr>
<td>May</td>
<td>0</td>
<td>1.30</td>
<td>1.47</td>
<td>2.07</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>0</td>
<td>0.69</td>
<td>1.26</td>
<td>1.96</td>
<td>4.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>0.84</td>
<td>1.71</td>
<td>1.81</td>
<td>4.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td>0</td>
<td>0.66</td>
<td>1.23</td>
<td>2.42</td>
<td>4.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept</td>
<td>0</td>
<td>1.40</td>
<td>2.10</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>0</td>
<td>1.28</td>
<td>5.02</td>
<td>4.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MJJA Growing Season

\[\delta Y_\sigma = K_\sigma + B_\sigma \cdot \delta \text{Precip(AMJJA)}_\sigma + C_\sigma \cdot \delta \text{OpaqueCloud}_\sigma \]

<table>
<thead>
<tr>
<th>Variable: (\delta Y_\sigma)</th>
<th>(K_\sigma)</th>
<th>(B_\sigma)</th>
<th>(C_\sigma)</th>
<th>(R^2_\sigma)</th>
<th>(\sigma(\delta Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta T_{x\sigma})</td>
<td>0±0.7</td>
<td>-0.33±0.03</td>
<td>-0.52±0.03</td>
<td>0.52</td>
<td>1.11</td>
</tr>
<tr>
<td>(\delta T_{m\sigma})</td>
<td>0±0.8</td>
<td>-0.21±0.05</td>
<td>-0.50±0.07</td>
<td>0.38</td>
<td>0.88</td>
</tr>
<tr>
<td>(\delta DTR_\sigma)</td>
<td>0±0.6</td>
<td>-0.55±0.03</td>
<td>-0.39±0.03</td>
<td>0.62</td>
<td>0.83</td>
</tr>
<tr>
<td>(\delta RH_{tx\sigma})</td>
<td>0±0.6</td>
<td>0.56±0.03</td>
<td>0.35±0.03</td>
<td>0.60</td>
<td>4.35</td>
</tr>
<tr>
<td>(\delta RH_{m\sigma})</td>
<td>0±0.7</td>
<td>0.51±0.03</td>
<td>0.33±0.03</td>
<td>0.50</td>
<td>4.61</td>
</tr>
<tr>
<td>(\delta PLCL_{tx\sigma})</td>
<td>0±0.6</td>
<td>-0.56±0.03</td>
<td>-0.37±0.03</td>
<td>0.61</td>
<td>18.6</td>
</tr>
<tr>
<td>(\delta Q_{tx\sigma})</td>
<td>0±0.9</td>
<td>0.50±0.04</td>
<td>0.03±0.04</td>
<td>0.26</td>
<td>0.58</td>
</tr>
<tr>
<td>(\delta \theta_{Et\sigma})</td>
<td>0±1.0</td>
<td>0.22±0.04</td>
<td>-0.31±0.04</td>
<td>0.09</td>
<td>1.95</td>
</tr>
</tbody>
</table>
Diurnal coupling: MJJA mean

• Internal coupling well-defined
 – Slopes less than 50-yr climate
Land-surface-atmosphere coupling: daily timescales

- **11 stations**: 54000 days in JJA
 - Calibrate cloud to BSRN ECA, LW_{dn}
 - Cloud, ECA, LW_{n} → DTR and ΔRH
 - *Fully coupled L-A system*

- **Stratify**: *opaque cloud and*
 - RH
 - Wind
 - Day-Night cloud asymmetry
 - Precipitation anomalies
Partition: Cloud + RH

- Low RH: warmer T_x and DTR (low precip.)
- High RH: higher afternoon θ_{Etx}

Partition: Cloud + Windspeed

- **Low wind**: lower T_n, higher DTR, RH_{tn}
 - Clear-sky radiative cooling

- **Low wind**: higher afternoon Q_{tx}, θ_{Etx}
 - Stronger superadiabatic layer?
Day-Night Cloud Asymmetry

- $\Delta OPAQ = (OPAQ_m - OPAQ_{SW}) > 0$
 - Less daytime cloud \rightarrow Larger R_n
 - T_x, T_n shift up
 - Higher afternoon θ_{Etx}
 - (Higher precip)
Cloud + δPrecipWT
(Monthly Precip Anomalies)

![Graphs showing temperature, dew point, relative humidity, and pressure changes with cloud cover.](image)
Remap: OPAQ_m to LW_n
Land-surface-atmosphere coupling: daily timescales

• 11 stations: 54000 days in JJA

• **Fully coupled system**

• Diurnal cycle driven by OPAQ\textsubscript{m}
 – RH, wind, day-night cloud asymmetry, monthly precip anomalies
 – *Tight linear* DTR-LW\textsubscript{n} coupling

• **Work in progress**
 – *Full annual cycle of* diurnal cycle
Conclusions

• **Hydrometeorology requires**
 – Precipitation and cloud/radiation
 • Cloud dominates on daily timescale
 • Both matter: monthly to seasonal
 – Temperature and RH
 • Giving LCL and θ_E: feedback to Precip

• **Canadian Prairie data**
 – Describe fully coupled L-A system
 – Invaluable for model evaluation
11 stations: 53-yr JJA climate

- Precip to \((R^2) \)
 - Cloud (0.56)
 - \(P_{\text{LCLtx}} \) (0.83)
 - \(RH_{\text{tx}} \) (0.71)

- Cloud to
 - \(T_x \) (0.69)

- Separation

- Month: blend

- Daily: cloud
How good is the regression fit?

- September
 \[T_x \pm 1.4^\circ C \]
 \[DTR \pm 0.8^\circ C \]
 \[RH_{tx} \pm 3.5\% \]
 \[P_{LCLtx} \pm 13hPa \]

- Some extremes underestimated
 (586 station-yrs)