Assessing the land-surface, boundary layer and cloud-field coupling in ERA-40

Alan K. Betts
Atmospheric Research, Pittsford, VT
akbetts@aol.com

Co-investigators
ERA-40 data: Pedro Viterbo
BERMS Data: Alan Barr, Andy Black, Harry McCaughey

AMS Session J5, Atlanta, Jan 31, 2006
Background references

• Preprints: ftp://members.aol.com/akbetts
Land-surface coupling

Models differ widely [Koster et al., Science, 2004]

Precip \rightarrow SMI \rightarrow λE \rightarrow clouds \rightarrow Precip

vegetation \rightarrow vegetation \rightarrow BL param \rightarrow dynamics

soils \rightarrow RH \rightarrow microphysics

runoff \rightarrow Cu param

LW,SW radiation

R_{net}, H

$\text{SMI : soil moisture index [0<SMI<1 as PWP<SM<FC]}$

α_{cloud}: ‘cloud albedo’ viewed from surface
ERA40: soil moisture \rightarrow LCL and EF

- River basin daily means
- Binned by soil moisture and R_{net}
ERA40: Surface ‘control’

- Madeira river, SW Amazon
- Soil water \rightarrow LCL, LCC and LW_{net}
ERA-40 dynamic link (mid-level omega)

- $\Omega_{\text{mid}} \rightarrow$ Cloud albedo, TCWV and Precipitation
Compare ERA-40 with 3 BERMS sites

Focus:

• Coupling of clouds to surface fluxes
• Define a ‘cloud albedo’ that reduces the shortwave (SW) flux reaching surface
 - Basic ‘climate parameter’, coupled to surface evaporation [locally/distant]
Compare ERA-40 with BERMS

- ECMWF reanalysis
- ERA-40 hourly time-series from single grid-box
- BERMS 30-min time-series from
 - Old Aspen (OA)
 - Old Black Spruce (OBS)
 - Old Jack Pine (OJP)
- Daily Average
Global model improvements [ERA-40]

- Reanalysis T bias is now small in all seasons [ERA-40 land-surface model developed from BOREAS]
- BERMS inter-site variability of daily mean T is small
Comparison of BERMS and ERA-40

OBS to: OJP OA ERA-40
Seasonal Evaporative Fraction

- Data as expected: OA > OBS > OJP
- ERA-40 too high in spring and fall [Lacks vegetation seasonal cycle]
- ERA a little high in summer?
Comparison of BERMS and ERA-40

SW_{dn}

LW_{dn}

OBS to: OJP OA ERA-40
Cloud ‘albedo’: $\alpha_{\text{cloud}} = 1 - \frac{SW_{\text{down}}}{SW_{\text{clear}}}$
Cloud albedo comparison (daily)

\[\alpha_{\text{cloud}} \]

OBS to:
- OJP
- OA
- ERA-40

Correlation:
- Good
- Fair
- Poor

Spacing:
- 29km
- 81km
- [grid-point]
Cloud albedo and LW comparison

ERA-40: low α_{cloud} [except summer]

LW_{net} bias [winter]
How do fluxes depend on cloud cover?

- Quasi-linear variation
- Evaporation varies less than other fluxes
\(\text{LW}_{\text{net}} \) on RH and \(\alpha_{\text{cloud}} \)

- Outgoing \(\text{LW}_{\text{net}} \) falls as RH and cloud cover increase
- Higher RH means lower LCL & depth of ML
- \(\text{LW} \) coupling same for BERMS and ERA-40
Conclusions -1

• Flux tower data have played a key role in improving representation of physical processes in forecast models

• Mean biases have been greatly reduced, but errors in cloud fields are visible

• Models can help us understand the coupling of physical processes
Conclusions - 2

• Are observables coupled correctly in a model? Accuracy of model ‘daily climate’

• Key non-local observables:
 – BL quantities: RH, LCL
 – Clouds: reduce SW reaching surface, α_{cloud}
Conclusions - 3

• Cloud albedo is as important as surface albedo [with higher variability]

• Clouds, BL and surface are a coupled system

• H depends more on α_{cloud} than does λE
Background references

• Preprints: ftp://members.aol.com/akbetts
Daily mean fluxes give model ‘equilibrium climate’ state

• Map model climate state and links between processes using daily means

• Think of seasonal cycle as transition between daily mean states
 + synoptic noise
Climate and weather forecast models

How well are physical processes represented?

- SMI → Evaporation → clouds → SW_{net}, LW_{net}

- FLUXNET data can assess both biases and poor representation of some physical processes and their coupling
Compare ERA-40 with 3 BERMS sites

- **Focus**: coupling of clouds to surface fluxes
- Define a ‘cloud albedo’ that reduces the shortwave (SW) flux reaching surface
- Basic ‘climate parameter’, coupled to surface evaporation [locally/distant]
$P_{LCL} \rightarrow \alpha_{\text{cloud}} \text{ and } LW_{\text{net}}$