Land-cloud-climate coupling on the Canadian Prairies

Dr. Alan K. Betts
(Ampheric Research, Pittsford, VT 05763)
Co-authors: Ray Desjardin, Devon Worth, D. Cerkowniak (Agriculture-Canada); Shusen Wang, Junhua Li (Natural Resources Canada), Brian Beckage, (UVM VT); Anton Beljaars (ECMWF) and Ahmed Tawfik (NCAR)

akbetts@aol.com
http://alanbetts.com

Land-Atmosphere Interactions
Valsavarenche, Valle d'Aosta, Italy
22 June - 1 July, 2015
Key Issues

• **Northern latitude climate**
 – Large seasonal cycle
 • Cold winters with snow
 • Snow is a fast climate switch
 • Two “climates” - above and below the freezing point of water

– **Summer hydrometeorology**
 • T and RH have joint dependence on radiation and precipitation on monthly timescales

– **Observational evaluation of models**
 • *Remarkable 55-yr hourly data set with opaque/reflective cloud observations*
Climate Processes

- **Solar seasonal cycle**
- **Precipitation**

- **Reflection of SW**
 - *Clouds*: Water drops, ice crystals
 - Cools surface
 - *Snow and ice* on surface
 - Cools surface

- **Water vapor/clouds trap LW**
 - Re-radiation down warms surface
15 Prairie stations: 1953-2011

- **Hourly** p, T, RH, WS, WD, **opaque/reflective cloud**
- **Daily** precipitation and snowdepth
References

• http://alanbetts.com/research
Diurnal Climate Dataset

- Reduce hourly data to
 - daily means: T_m, RH_m, $OPAQ_m$ etc
 - data at $T_{\max/\min}$: T_x and T_n

- **Diurnal cycle climate**
 - $DTR = T_x - T_n$
 - $\Delta RH = RH_{tn} - RH_{tx}$

- Almost no missing hourly data
 (until recent cutbacks)
Surface Radiation Budget

- $R_n = SW_n + LW_n$

- Define Effective Cloud Albedo

 \[ECA = \frac{-SW_{CF}}{SW_{dn}(\text{clear})} \]

 \[SW_n = (1 - \alpha_s)(1 - ECA) \cdot SW_{dn}(\text{clear}) \]

 Reflected by surface, clouds

 MODIS Calibrate Opaque Cloud data
 with Baseline Surface
 Radiation Network (BSRN)
Opaque Cloud Quality

- Daily means unbiased
- Correlation falls with distance
- Good data!
• **Annual means**
 – Interesting long-term variability
 – *Only Lethbridge has obvious bias after 1994*
Annual/D

- Total opaque cloud fraction and lowest-level opaque cloud

- Normalized diurnal cycles (where 1 is the diurnal maximum and 0 is the minimum.

- Regime shift between cold and warm seasons: Why?
Cloud Forcing Needs Clear-sky Fluxes:

- Compare ERA-Interim (ERI) and ‘clear’ BSRN days
 - $SW_{dn}(\text{clear})$: ERI biased low
 - Fit BSRN
 - $LW_{dn}(\text{clear})$: ERI unbiased
SW and LW Cloud Forcing

BSRN at Bratt’s Lake, SK

- **“Cloud Forcing”**
 - Change from clear-sky
- Clouds reflect SW
 - SWCF
 - Cool
- Clouds trap LW
 - LWCF
 - Warms
- Sum is CF
- **Surface albedo reduces SW_n**
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve
- **Regime change**

(Betts et al. 2015)
Use BSRN data to “calibrate” daily opaque/reflective Cloud at Regina

- **Daily mean opaque cloud** OPAQ_m

- **LW cools but clouds reduce cooling**

- **Net LW**: LW_n
 - $T>0$: depends on RH as well
 - $T<0$: depends on T and TCWV

- **Regression gives** LW_n to ± 8W/m² if $T_m>0$ ($R^2=0.91$)

(Betts et al. 2015)
SW calibration

- **Contrast simple quadratic fit with fit through zero**
- **Uncertainty at low opaque cloud end**
 - Thin cirrus not opaque
Warm and Cold Seasons

- Unstable BL: SWCF
- Clouds at LCL
 - reflecting sunlight
- Stable BL: LWCF
- Snow
 - reflecting sunlight
Clouds: Cold & Warm Climates

- **250,000 days (Prairies: 650 station-years: 1953-2011)**
- **Freezing point of water changes everything**
- **Cold <0°C: Snow: Surface cools radiatively, clouds ‘blanket’**
 - **stable boundary layer**
- **Transition near freezing: >0°C: Snow; <0°C: No Snow**
- **Warm >0°C: No Snow: Surface solar heating, clouds reflect**
 - **Daytime unstable boundary layer**
RH and Pressure of LCL

- **Cold <0°C: Snow**
 - RH near saturation over ice
 - Prairie: 1955-2011 (75,000 days)
 - Cold: T < 0°C, snow

- **Transition**
 - Prairie: 1955-2011 (30,000 days)
 - Transition: T < 0°C, no snow; T > 0°C, snow

- **Warm >0°C: No Snow**
 - Prairie: 1955-2011 (150,000 days)
 - Warm: T > 0°C, no snow
Specific Humidity

- **Three Q regimes**
- **Cold <0°C**: Snow: *stable BL*, *no diurnal cycle*
- **Transition near freezing**: diurnal cycle
- **Warm >0°C**: *unstable BL*
 - Morning and late afternoon BL coupling/uncoupling
 - Clear is ‘drier’, while cloudy is cooler/drier/flat
Above/Below Freezing
Conserved Variables

SWCF

LWCF
Afternoon LCL is Cloud-base

- At T_{max}
- Lowest cloud-base (*ceilometer*)
- LCL (surface)
- Coupled convective boundary layer (*CBL*)
Winter Ice and Snow
Snowfall and Snowmelt

- Temperature falls 10°C with first snowfall
- And rises again with snowmelt
- "Fast transitions in ‘local climate’: a ‘climate switch’"
 - Snow reflects sunlight
 - Reduces evaporation and water vapor greenhouse
Mid-Nov. Snow Transition (Cloud partition)

- Ahead of snow Transition
- Warm >0°C: No Snow Transition
- Cold <0°C: Snow Transition
- Time sequence shows the three regimes
More snow cover - Colder temperatures

Alberta, Canada
October to April

Freezing

Mean Temperature (°C)

Fraction of Days with Snow Cover

\[T = 3.9 - 14.6 \times \text{FDS} \ (R^2 = 0.79) \]

Betts et al. 2014a
Warm Season Climate: $T>0^\circ C$
(No snow: May – October)

- **Hydrometeorology**
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
- **Daily timescale is radiation driven**
 - Night LW$_n$; day ECA/R$_n$ (and EF)
- **Monthly timescale: Fully coupled**
- (Long timescales: separation)

Betts et al. 2014b
Monthly timescale: Regression

\[\delta DTR = K + A \cdot \delta \text{Precip}(\text{Mo}-2) + B \cdot \delta \text{Precip}(\text{Mo}-1) + C \cdot \delta \text{Precip} + D \cdot \delta \text{OpaqueCloud} \]

\(\delta DTR \) anomalies

<table>
<thead>
<tr>
<th>Month</th>
<th>K</th>
<th>A ((\text{Mo}-2))</th>
<th>B ((\text{Mo}-1))</th>
<th>C ((\text{Mo}))</th>
<th>D ((\text{Mo}))</th>
<th>(R^2) All</th>
<th>(R^2) Precip</th>
<th>(R^2) Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0 ± 0.8</td>
<td>-0.37 ± 0.05</td>
<td>-0.37 ± 0.04</td>
<td>-1.10 ± 0.05</td>
<td>0.73</td>
<td>0.41</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>0 ± 0.7</td>
<td>-0.30 ± 0.03</td>
<td>-0.32 ± 0.02</td>
<td>-0.97 ± 0.04</td>
<td>0.69</td>
<td>0.42</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>0 ± 0.7</td>
<td>-0.20 ± 0.03</td>
<td>-0.25 ± 0.02</td>
<td>-0.33 ± 0.03</td>
<td>-1.10 ± 0.05</td>
<td>0.67</td>
<td>0.42</td>
<td>0.48</td>
</tr>
<tr>
<td>Aug</td>
<td>0 ± 0.7</td>
<td>-0.07 ± 0.02</td>
<td>-0.21 ± 0.03</td>
<td>-0.40 ± 0.03</td>
<td>-1.24 ± 0.04</td>
<td>0.79</td>
<td>0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>Sept</td>
<td>0 ± 0.8</td>
<td>-0.22 ± 0.03</td>
<td>-0.49 ± 0.04</td>
<td>-1.27 ± 0.04</td>
<td>0.82</td>
<td>0.43</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>0 ± 0.8</td>
<td>-0.27 ± 0.03</td>
<td>-0.70 ± 0.07</td>
<td>-1.33 ± 0.04</td>
<td>0.77</td>
<td>0.37</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

Betts et al. 2014b
Monthly timescale: Regression

\[\delta \text{RH}_{tx} = K + A^* \delta \text{Precip}(\text{Mo-2}) + B^* \delta \text{Precip}(\text{Mo-1}) + C^* \delta \text{Precip} + D^* \delta \text{OpaqueCloud} \]

Afternoon \(\delta \text{RH}_{tx} \) anomalies

<table>
<thead>
<tr>
<th>Month</th>
<th>K</th>
<th>A (Mo-2)</th>
<th>B (Mo-1)</th>
<th>C (Mo)</th>
<th>D (Mo)</th>
<th>(R^2) All</th>
<th>(R^2) Precip</th>
<th>(R^2) Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0 ± 3.6</td>
<td>1.30 ± 0.38</td>
<td>1.47 ± 0.22</td>
<td>2.07 ± 0.17</td>
<td>4.75 ± 0.20</td>
<td>0.72</td>
<td>0.46</td>
<td>0.62</td>
</tr>
<tr>
<td>Jun</td>
<td>0 ± 3.6</td>
<td>0.69 ± 0.23</td>
<td>1.26 ± 0.15</td>
<td>1.96 ± 0.12</td>
<td>4.36 ± 0.22</td>
<td>0.68</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>July</td>
<td>0 ± 4.1</td>
<td>0.84 ± 0.18</td>
<td>1.71 ± 0.12</td>
<td>1.81 ± 0.17</td>
<td>4.40 ± 0.30</td>
<td>0.59</td>
<td>0.43</td>
<td>0.33</td>
</tr>
<tr>
<td>Aug</td>
<td>0 ± 3.6</td>
<td>0.66 ± 0.11</td>
<td>1.23 ± 0.13</td>
<td>2.42 ± 0.16</td>
<td>4.08 ± 0.20</td>
<td>0.73</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td>Sept</td>
<td>0 ± 3.5</td>
<td>1.40 ± 0.13</td>
<td>2.10 ± 0.18</td>
<td>4.35 ± 0.16</td>
<td>4.58 ± 0.23</td>
<td>0.67</td>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>Oct</td>
<td>0 ± 4.3</td>
<td>1.28 ± 0.19</td>
<td>5.02 ± 0.39</td>
<td>4.58 ± 0.23</td>
<td>4.58 ± 0.23</td>
<td>0.67</td>
<td>0.44</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Betts et al. 2014b
Monthly Regression Fits

Regression

May

July

Sept

δT_x δDTR δRH_{tx} δP_{LCLtx}
MJJA Growing Season

\[\delta Y_\sigma = K_\sigma + B_\sigma \cdot \delta \text{Precip(AMJJA)}_\sigma + C_\sigma \cdot \delta \text{OpaqueCloud}_\sigma \]

<table>
<thead>
<tr>
<th>Variable: (\delta Y_\sigma)</th>
<th>(K_\sigma)</th>
<th>(B_\sigma)</th>
<th>(C_\sigma)</th>
<th>(R^2_\sigma)</th>
<th>(\sigma(\delta Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta T_{tx\sigma})</td>
<td>0±0.7</td>
<td>-0.33±0.03</td>
<td>-0.52±0.03</td>
<td>0.52</td>
<td>1.11</td>
</tr>
<tr>
<td>(\delta T_{m\sigma})</td>
<td>0±0.8</td>
<td>-0.21±0.05</td>
<td>-0.50±0.07</td>
<td>0.38</td>
<td>0.88</td>
</tr>
<tr>
<td>(\delta DTR_\sigma)</td>
<td>0±0.6</td>
<td>-0.55±0.03</td>
<td>-0.39±0.03</td>
<td>0.62</td>
<td>0.83</td>
</tr>
<tr>
<td>(\delta RH_{tx\sigma})</td>
<td>0±0.6</td>
<td>0.56±0.03</td>
<td>0.35±0.03</td>
<td>0.60</td>
<td>4.35</td>
</tr>
<tr>
<td>(\delta RH_{m\sigma})</td>
<td>0±0.7</td>
<td>0.51±0.03</td>
<td>0.33±0.03</td>
<td>0.50</td>
<td>4.61</td>
</tr>
<tr>
<td>(\delta P_{LCLtx\sigma})</td>
<td>0±0.6</td>
<td>-0.56±0.03</td>
<td>-0.37±0.03</td>
<td>0.61</td>
<td>18.6</td>
</tr>
<tr>
<td>(\delta Q_{tx\sigma})</td>
<td>0±0.9</td>
<td>0.50±0.04</td>
<td>0.03±0.04</td>
<td>0.26</td>
<td>0.58</td>
</tr>
<tr>
<td>(\delta \theta_{Etx\sigma})</td>
<td>0±1.0</td>
<td>0.22±0.04</td>
<td>-0.31±0.04</td>
<td>0.09</td>
<td>1.95</td>
</tr>
</tbody>
</table>
Growing Season Coupling between Energy and Water Budgets and Surface Climate

- Total water storage (GRACE) coupled to precipitation variability (F=0.56)
- \(R_n \) coupled to cloud variability
- Climate cloud coupling: \(\delta \text{Cloud} = 0.73 \delta \text{Precip} \)
- Diurnal climate coupled to cloud and precipitation variability (regression)
Daily Timescale in Summer

• 11 Prairie stations: 1953-2011 (Betts et al. 2015)

• 54000 days: (standard error of mean small)

• Partition by cloud, sub-partition by
 – RH_m
 – Wind
 – (Day-night cloud asymmetry)
 – Precipitation anomalies
Daily Summer Climate Partitioned by Cloud and RH

- DTR increases with decreasing cloud and RH
 - Increasing R_n (and falling soilwater)
- Upward shift to higher θ_{Etx} with increasing R_{Hm}
 - Despite falling T_x because of Q_x increase
Daily Summer Climate Partitioned by Cloud and Wind

- DTR increases with decreasing wind
 - Falling T_n under clear skies at low windspeed
 - Increasing sunrise RH_{tn} at low windspeed

- Higher θ_{Etx} with decreasing wind
 - Stronger superadiabatic layer?
DTR to LW_n: RH and Wind

- **DTR** depends **linearly** on LW_n
 - cooling from afternoon T_x to sunrise T_n
- **Increasing wind reduces DTR**
 - T_x falls and T_n increases

Betts et al. 2015
Compare ERA40 Madeira River (Amazon)

Canadian Prairie station data

versus ERA40 Madeira River basin mean

Not bad
Partition by Cloud & Precip. Anomalies

- Weighted precipitation anomalies as surrogate for soil moisture
- Cooler, moister, lower P_{LCLtx}, higher θ_{Etx} with increasing δPrecipWT
DTR to LW_n and Precip

Summer, JJA: 54000 days

- **DTR depends linearly on LW_n** (daily $R^2 = 0.61$)
 - cooling from afternoon T_x to sunrise T_n
- **DTR depends on ECA and RH$_m$**
 - RH_m is ‘climate response’ to energy partition by soil moisture

(Betts et al. 2015)
15 Prairie stations: 1953-2011

- **Hourly** p, T, RH, WS, WD, **opaque/reflective cloud**
- **Daily** precipitation and snowdepth
Change in Cropping (SK)

- Ecodistrict mean for 50-km around station
- Saskatchewan:
 - 25% drop in ‘SummerFallow’
 - (no crops to save water)
- Split at 1991 - has summer climate changed?

Betts et al. 2013b
Three Station Mean in SK

- **Growing season** (winter warmer)
 - T_{max} cooler; RH moister
 - DTR and ΔRH seasonal transitions
Impact on Convective Instability

Growing season

- Lower LCL
- Higher θ_E
- More Precip

Betts et al. 2013b
Precip. to SWCF in Real World?

- ERA40 Missouri basin means: MJJA (left)
- Canadian Prairie stations: JJA
 - *Has greater cloud forcing for same precip. forcing*
Review
Warm & Cold Climates: T \geq 0°C

- Warm >0°C: Clouds reflect sunlight
- Cold <0°C: Clouds are greenhouse & snow reflects sun
- T falls 10$^\circ$C with snow - *Fast climate transition*
Snowfall and Snowmelt

- Temperature falls 10°C with first snowfall
- And rises again with snowmelt
- Fast transitions in ‘local climate’: a ‘climate switch’
 - Snow reflects sunlight
 - Reduces evaporation and water vapor greenhouse
More snow cover - Colder temperatures

Alberta, Canada
October to April

Freezing

\[T = 3.9 - 14.6 \times \text{FDS} \] (\(R^2 = 0.79 \))

Betts et al. 2014a
MJJA Growing Season

\[\delta Y_\sigma = K_\sigma + B_\sigma \delta \text{Precip}(\text{AMJJA})_\sigma + C_\sigma \delta \text{OpaqueCloud}_\sigma \]

<table>
<thead>
<tr>
<th>Variable: (\delta Y_\sigma)</th>
<th>(K_\sigma)</th>
<th>(B_\sigma)</th>
<th>(C_\sigma)</th>
<th>(R^2_\sigma)</th>
<th>(\sigma(\delta Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta T_{x\sigma})</td>
<td>0±0.7</td>
<td>-0.33±0.03</td>
<td>-0.52±0.03</td>
<td>0.52</td>
<td>1.11</td>
</tr>
<tr>
<td>(\delta T_{m\sigma})</td>
<td>0±0.8</td>
<td>-0.21±0.05</td>
<td>-0.50±0.07</td>
<td>0.38</td>
<td>0.88</td>
</tr>
<tr>
<td>(\delta DTR_\sigma)</td>
<td>0±0.6</td>
<td>-0.55±0.03</td>
<td>-0.39±0.03</td>
<td>0.62</td>
<td>0.83</td>
</tr>
<tr>
<td>(\delta RH_{tx\sigma})</td>
<td>0±0.6</td>
<td>0.56±0.03</td>
<td>0.35±0.03</td>
<td>0.60</td>
<td>4.35</td>
</tr>
<tr>
<td>(\delta RH_{m\sigma})</td>
<td>0±0.7</td>
<td>0.51±0.03</td>
<td>0.33±0.03</td>
<td>0.50</td>
<td>4.61</td>
</tr>
<tr>
<td>(\delta P_{LCLtx\sigma})</td>
<td>0±0.6</td>
<td>-0.56±0.03</td>
<td>-0.37±0.03</td>
<td>0.61</td>
<td>18.6</td>
</tr>
<tr>
<td>(\delta Q_{tx\sigma})</td>
<td>0±0.9</td>
<td>0.50±0.04</td>
<td>0.03±0.04</td>
<td>0.26</td>
<td>0.58</td>
</tr>
<tr>
<td>(\delta \theta_{Etx\sigma})</td>
<td>0±1.0</td>
<td>0.22±0.04</td>
<td>-0.31±0.04</td>
<td>0.09</td>
<td>1.95</td>
</tr>
</tbody>
</table>
DTR to LW_n and ECA

- **DTR depends linearly on LW_n** (daily $R^2 = 0.61$)
 - cooling from afternoon T_x to sunrise T_n
- **DTR depends on ECA and RH_m**
 - RH_m is ‘climate response’ to energy partition by soil moisture

Summer, JJA: 54000 days

Betts et al. 2015
Summary

• Distinct warm and cold season states
 – Sharp transitions with snow cover: $\alpha_s = 0.7$
 – Snow cover is a “climate switch”
 • From ‘Warm when clear’, convective boundary layer
 • To ‘Cold when clear’, with stable boundary layer
 • Snow cover explains 80% of cold season T_{mean} variability

• Increased transpiration from crop change
 – Cooled and moistened summer climate
 – Lowered cloud-base and increased θ_E
 – (While winter climate has warmed)

Papers at http://alanbetts.com
Conclusions

• **Hydrometeorology requires**
 – Precipitation and cloud/radiation
 • Cloud dominates on daily timescale
 • Both affect monthly to seasonal anomalies
 – Temperature and RH
 • Giving LCL and θ_E: feedback to Precip

• **Canadian Prairie data**
 – Describe fully coupled Land-Atmos system
 – Invaluable for model evaluation

• http://alanbetts.com/ (5 papers)