Reinventing Hydrometeorology

• *Betts (2004): Understanding hydrometeorology using global models.* (Now *Observations*)

• Canadian Prairies: northern climate
 – Cold season hydrometeorology
 • Snow is a fast climate switch
 – Two distinct “climates” - above and below 0°C
 – 5-mo memory of cold season precipitation
 – Warm season hydrometeorology
 • T and RH have joint dependence on radiation and precipitation on monthly timescales
 • 2-4 months precipitation memory
 • System Coupling parameters (observations)
15 Prairie stations: 1953-2011

- **Hourly** p, T, RH, WS, WD, **Opaque Cloud** by level, (SW_{dn}, LW_{dn})
- **Daily** precipitation and snowdepth
- Ecodistrict crop data since 1955; BSRN data
- Albedo data (MODIS/CCRS: 250m)

Diurnal Climate Dataset

- Reduce hourly data to
 - daily means: T_m, RH_m, $OPAQ_m$ etc
 - data at $T_{\text{max/min}}$: T_x and T_n

- **Diurnal cycle approx. climate**
 - $DTR = T_x - T_n$
 - $\Delta RH = RH_{tn} - RH_{tx}$

- **Full diurnal Cycle: \equiv monthly**
 - ‘True’ diurnal ranges *(Critical for winter)*
 - Energy imbalance of diurnal cycle
Snowfall and Snowmelt
Winter and Spring transitions

- Temperature falls/rises about 10K with first snowfall/snowmelt
- **Snow reflects sunlight; shift to cold stable BL**
 - **Local climate switch** between warm and cold seasons
 - **Winter comes fast with snow**

Betts et al. 2014a
Impact of Snow on Climate

Separate mean climatology into days with no-snow and Snowdepth >0

\[\Delta T = T:\text{no-snow} - T:\text{snow} = -10.2(\pm 1.1)\, ^{\circ}\text{C} \]

Betts et al. (2016)
Interannual variability of T coupled to Snow Cover

- Alberta: 79% of variance
- Slope $T_m = -14.7 \pm 0.6$ K

10% fewer snow days = 1.5K warmer on Prairies

More snow cover - Colder temperatures

Alberta, Canada October to April
Surface Radiation Budget

- \(R_n = SW_n + LW_n \)

- Define Effective Cloud Albedo

\[
ECA = - \frac{SWCF}{SW_{dn}(\text{clear})}
\]

\[
SW_n = (1 - \alpha_s)(1 - ECA) \, SW_{dn}(\text{clear})
\]

Reflected by surface, clouds

MODIS Calibrate Opaque Cloud data with Baseline Surface Radiation Network (BSRN)
Opaque Cloud (Observers)

- Daily means unbiased
- Correlation falls with distance
- Good data!
Annual/Diurnal Opaque Cloud

- Total opaque cloud fraction and lowest-level opaque cloud

- Normalized diurnal cycles (where 1 is the diurnal maximum and 0 is the minimum.

- Regime shift between cold and warm seasons: Why? Cloud forcing changes sign
Use BSRN data to “calibrate” daily opaque/reflective Cloud at Regina

- Daily mean opaque cloud OPAQ_m
- LW cools but clouds reduce cooling
- Net LW: LW_n
 - $T>0$: RH dependence
 - $T<0$: T, TCWV also
- Regression gives LW_n to $\pm 8\text{W/m}^2$ for $T_m>0$ ($R^2=0.91$)

(Betts et al. 2015)
"Cloud Forcing" — Change from clear-sky flux
- SWCF — Cool
- LWCF — Warms

Sum is CF
- Surface albedo reduces SW_n
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve

Regime change

(Betts et al. 2015)
Diurnal cycle: Clouds & Snow

Canadian Prairies
660 station-years of data

Winter climatology
- Colder when clear
- LWCF dominant with snow
- Stable BL

Summer climatology
- Warmer when clear
- SWCF dominant: no snow
- Unstable daytime BL

Transition months:
- Show both climatologies
- With 11K separation
- Fast transitions with snow
- Snow is “Climate switch”
Monthly diurnal climatology (by snow and cloud)
Merge all data
(650 years: 240,000 days)

Cold-Snow (31%)

Mixed (10%)

Warm-NoSnow (59%)
(Standard errors tiny)

Betts and Tawfik 2016)
Impact of Snow

• Distinct warm and cold season states
• Snow cover is the “climate switch”
 - **Prairies**: $\Delta T = -10^\circ C$ (winter albedo = 0.7)
 - **Vermont**: $\Delta T = -6^\circ C$ (winter albedo 0.3 to 0.4)

• Snow transforms BL-cloud coupling
 - No-snow ‘Warm when clear’ - convective BL
 - Snow ‘Cold when clear’ - stable BL
Warm Season Climate: $T > 0^\circ \text{C}$
(April – October with no snow)

- **Hydrometeorology**
 - *with Precipitation* and *Radiation*
 - *Diurnal cycle of T and RH*
 - *Cannot do coupling with just T & Precip!*

- **Daily timescale is radiation driven**
 - *Night LW_n; day SW_n (and EF)*

- **Monthly timescale: Fully coupled**

- *(Long timescales: separation)*

Betts et al. 2014b; Betts and Tawfik 2016)
Warm Season Diurnal Climatology

• Averaging daily values (Conventional)
 \[DTR_D = T_{xD} - T_{nD} \]
 \[DRH_D = RH_{xD} - RH_{nD} \] (rarely shown)

• Extract mean diurnal ranges from composites (‘True’ radiatively-coupled diurnal ranges: damps advection)
 \[DTR_T = T_{xT} - T_{nT} \]
 \[DRH_T = RH_{xT} - RH_{nT} \]

• Q1: How are they related? \(DTR_T < DTR_D \)
Monthly Diurnal Climatology

Q2: How much warmer is it at the end of a clear day?
Diurnal Ranges & Imbalances

- April to Sept: same coupled structure
- Q1: DTR_T, $DRH_T < DTR_D$, DRH_D always
- Q2: Clear-sky: warmer (+2°C), drier (-6%)
Diurnal Ranges & Imbalances

- April to Sept: same coupled structure
- Clear-sky: θ_E (+3K), LCL higher (+18hPa)

(Betts and Tawfik 2016)
Stratify by Cloud and Wind

- Low wind-speed: DTR increases
 - T_n falls; T_x, θ_{Ex} increase; (P_{LCLx} falls)
 - Precip. increases in mid-range

(Betts and Tawfik 2016)
Warm Season Climate: \(T > 0^\circ C \)
(May to September: no snow)

- **Hydrometeorology**
 - with *Precipitation and Radiation*
 - *Diurnal cycle of* \(T \) and \(RH \)
 - *Cannot do coupling with just* \(T \) & *Precip*!

- **Monthly timescale: Fully coupled**
 - Use regression to couple anomalies

Betts et al. 2014b
What are the **coupling coefficients** in the “real world”?
Monthly Regression on Cloud and lagged Precip. anomalies

- Monthly anomalies (normalized by STD of means)
 - opaque cloud (CLD)
 - precip. (PR-0, PR-1, PR-2): current, previous 2 to 5 months

 \[\delta DTR = K + A*\delta CLD + B*\delta PR-0 + C*\delta PR-1 + D*\delta PR-2 \ldots \]

 (Month) (Month) (Month-1) (Month-2)

 Soil moisture memory

April: memory of entire cold season (snow, soil ice) back to November freeze

June, July, Aug: memory of moisture back to March
April: Memory of Precip. to November

1953-2011: 12 stations (619 months)

<table>
<thead>
<tr>
<th>Variable</th>
<th>δDTR</th>
<th>δT_x</th>
<th>δRH_n</th>
<th>δP_{LCLx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cld-Apr</td>
<td>-0.52±0.02</td>
<td>-0.78±0.04</td>
<td>0.76±0.03</td>
<td>-0.93±0.04</td>
</tr>
<tr>
<td>PR-Apr</td>
<td>-0.04±0.01</td>
<td>0.00±0.03</td>
<td>0.14±0.02</td>
<td>-0.13±0.03</td>
</tr>
<tr>
<td>PR-Mar</td>
<td>-0.13±0.02</td>
<td>-0.25±0.04</td>
<td>0.25±0.03</td>
<td>-0.30±0.04</td>
</tr>
<tr>
<td>PR-Feb</td>
<td>-0.09±0.02</td>
<td>-0.15±0.05</td>
<td>0.19±0.04</td>
<td>-0.24±0.04</td>
</tr>
<tr>
<td>PR-Jan</td>
<td>-0.10±0.02</td>
<td>-0.20±0.04</td>
<td>0.19±0.03</td>
<td>-0.22±0.04</td>
</tr>
<tr>
<td>PR-Dec</td>
<td>-0.06±0.02</td>
<td>-0.07±0.05</td>
<td>0.20±0.04</td>
<td>-0.24±0.04</td>
</tr>
<tr>
<td>PR-Nov</td>
<td>-0.09±0.02</td>
<td>-0.14±0.04</td>
<td>0.08±0.03</td>
<td>-0.12±0.04</td>
</tr>
</tbody>
</table>

$R^2 = 0.67$

δDTR = 0.67, δT_x = 0.48, δRH_n = 0.66, δP_{LCLx} = 0.66

1953-2011: 12 stations (619 months)
April Climate

- Regression on Opaq. Cloud, Precip: $R^2 \approx 0.7$
- Regression on Winter Precip: $R^2 \approx 0.35$
Summer Precip Memory back to March

JULY 1953-2011: 12 stations (615 sta-years)

<table>
<thead>
<tr>
<th>JULY</th>
<th>R²</th>
<th>δDTR</th>
<th>δRHₙ</th>
<th>δP_{LCLx}</th>
<th>δQₜₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.68</td>
<td>0.62</td>
<td>0.62</td>
<td>0.26</td>
</tr>
<tr>
<td>Cld-July</td>
<td>-0.58±0.03</td>
<td>0.63±0.04</td>
<td>-0.80±0.05</td>
<td>0.04±0.07</td>
<td></td>
</tr>
<tr>
<td>PR-July</td>
<td>-0.24±0.02</td>
<td>0.35±0.03</td>
<td>-0.42±0.04</td>
<td>0.40±0.05</td>
<td></td>
</tr>
<tr>
<td>PR-June</td>
<td>-0.15±0.01</td>
<td>0.27±0.02</td>
<td>-0.36±0.03</td>
<td>0.39±0.04</td>
<td></td>
</tr>
<tr>
<td>PR-May</td>
<td>-0.12±0.02</td>
<td>0.13±0.03</td>
<td>-0.20±0.04</td>
<td>0.24±0.06</td>
<td></td>
</tr>
<tr>
<td>PR-Apr</td>
<td>-0.05±0.03</td>
<td>0.10±0.05</td>
<td>-0.11±0.06</td>
<td>0.26±0.09</td>
<td></td>
</tr>
<tr>
<td>PR-Mar</td>
<td></td>
<td>0.16±0.07</td>
<td>-0.19±0.09</td>
<td>0.36±0.14</td>
<td></td>
</tr>
</tbody>
</table>

June, July, Aug have precip memory back to March
Monthly timescale: Regression

1953-2011: 12 stations (615/month)

δDTR anomalies

<table>
<thead>
<tr>
<th>Month</th>
<th>K</th>
<th>A (CLD)</th>
<th>B (PR-0)</th>
<th>C (PR-1)</th>
<th>D (PR-2)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0 ± 0.02</td>
<td>-0.61 ± 0.02</td>
<td>-0.27 ± 0.02</td>
<td>-0.17 ± 0.03</td>
<td>-0.06 ± 0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Jun</td>
<td>0 ± 0.02</td>
<td>-0.54 ± 0.04</td>
<td>-0.22 ± 0.02</td>
<td>-0.18 ± 0.02</td>
<td>-0.05 ± 0.03</td>
<td>0.68</td>
</tr>
<tr>
<td>July</td>
<td>0 ± 0.02</td>
<td>-0.57 ± 0.03</td>
<td>-0.24 ± 0.02</td>
<td>-0.15 ± 0.01</td>
<td>-0.12 ± 0.02</td>
<td>0.68</td>
</tr>
<tr>
<td>Aug</td>
<td>0 ± 0.02</td>
<td>-0.67 ± 0.02</td>
<td>-0.26 ± 0.02</td>
<td>-0.13 ± 0.02</td>
<td>-0.03 ± 0.02</td>
<td>0.80</td>
</tr>
<tr>
<td>Sept</td>
<td>0 ± 0.02</td>
<td>-0.71 ± 0.02</td>
<td>-0.30 ± 0.02</td>
<td>-0.12 ± 0.02</td>
<td>-0.03 ± 0.02</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Betts et al. 2014b, revisited
MJJA merge: coupling coefficients

<table>
<thead>
<tr>
<th></th>
<th>T_x (±0.015)</th>
<th>T_m</th>
<th>T_n</th>
<th>DTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLD</td>
<td>-0.96</td>
<td>-0.68</td>
<td>-0.34</td>
<td>-0.61</td>
</tr>
<tr>
<td>PR-0</td>
<td>-0.07</td>
<td>0.03</td>
<td>0.17</td>
<td>-0.24</td>
</tr>
<tr>
<td>PR-1</td>
<td>-0.16</td>
<td>-0.10</td>
<td>-0.01</td>
<td>-0.15</td>
</tr>
<tr>
<td>PR-2</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

T_x Max. Temp.:
- Falls strongly with cloud
- Falls a little with precip.

T_m SWCF (negative):
- Little precip dependence

T_n Min. Temp.:
- Falls with cloud
- Increases a little with precip.

DTR:
- Highest correlation
- Falls strongly with cloud
- Falls with precip. (memory)

1953-2011 (2466 months)
12 stations
MJJA merge: coupling coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Equation</th>
<th>R²</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tₓ</td>
<td>CLD -0.96, PR-0 -0.07, PR-1 -0.16, PR-2 -0.01 (±0.015)</td>
<td>0.44</td>
<td>Minimum RH
Increases with cloud
Increases with precip (Memory)</td>
</tr>
<tr>
<td>Tₘ</td>
<td>CLD -0.68, PR-0 0.03, PR-1 -0.10, PR-2 -0.00 (±0.015)</td>
<td>0.44</td>
<td>Mean RH
Increases with cloud
Increases with precip (Memory)</td>
</tr>
<tr>
<td>Tₙ</td>
<td>CLD -0.34, PR-0 0.17, PR-1 -0.01, PR-2 0.04 (±0.015)</td>
<td>0.14</td>
<td>Maximum RH
Increases with cloud
Increases with precip (Memory)
Saturation limits fall of Tₙ</td>
</tr>
<tr>
<td>DTR</td>
<td>CLD -0.61, PR-0 -0.24, PR-1 -0.15, PR-2 -0.06 (±0.015)</td>
<td>0.73</td>
<td>Diurnal range RH
Decreases with cloud
Decreases with precip</td>
</tr>
<tr>
<td>RHₙ</td>
<td>CLD 0.64, PR-0 0.36, PR-1 0.24, PR-2 0.12 (±0.015)</td>
<td>0.69</td>
<td>Minimum RH
Increases with cloud
Increases with precip (Memory)</td>
</tr>
<tr>
<td>RHₘ</td>
<td>CLD 0.57, PR-0 0.31, PR-1 0.26, PR-2 0.14 (±0.015)</td>
<td>0.61</td>
<td>Mean RH
Increases with cloud
Increases with precip (Memory)</td>
</tr>
<tr>
<td>RHₓ</td>
<td>CLD 0.41, PR-0 0.19, PR-1 0.21, PR-2 0.12 (±0.015)</td>
<td>0.36</td>
<td>Maximum RH
Increases with cloud
Increases with precip (Memory)</td>
</tr>
<tr>
<td>DRH</td>
<td>CLD -0.23, PR-0 -0.17, PR-1 -0.03, PR-2 0.0 (±0.015)</td>
<td>0.26</td>
<td>Diurnal range RH
Decreases with cloud
Decreases with precip</td>
</tr>
</tbody>
</table>

1953-2011 (2466 months)
12 stations
1953-2011 (2466 months)
12 stations

Q_{Tx}, Q_m \rightarrow precip not cloud
RH_n, T_x move inversely with cloud
P_{LCLx} reflects RH_n, T_x
T_m \rightarrow cloud not precip
θ_{Ex} down/up with cloud/precip
Dry to Wet Coefficient Change

3081 months: split into precip (PR-0) SD ranges: < -1σ, -1 to 0, 0 to 1, >1σ (393, 1382, 885, 421 mos)

- Asymmetric response
- Wet to dry conditions: dependence on precip. increases
- Except drought (0.3 mm/day)
- Consistent with uptake of water damping precip. anomalies (GRACE data)
Seasonal Drydown damps Precip anomalies

- GRACE data shows seasonal change: Δ(Total Water Storage)
- $\delta(\Delta TWS)$ damps 56% of precipitation anomalies

Betts et al. 2014b
Monthly Climate of T, RH on Cloud and Precipitation

- Sorted by cloud and weighted precip. anomalies
 - $\delta PR_{wt} = 0.60 \times \delta PR-0 + 0.40 \times \delta PR-1$
 - DTR increases with decreasing cloud and precip.
 - Afternoon RH$_n$ increases with cloud, precip.
Afternoon maximum of θ_{Ex} and P_{LCLx} on Cloud and Precipitation

- Afternoon θ_{Ex} increases with weighted precip
- Afternoon cloud-base (P_{LCLx}) falls with precip
- Both favor convective instability
Diurnal Cycle of Q

Binned by Opaque Cloud
Diurnal spread increases

Binned by Weighted Precipitation
Precip/evap shifts Q mean
Cloud and Precip coupled
Cloud anomalies from Climate anomalies

\[\delta \text{OPAQ}_m \approx \delta \text{OPAQ}_m^{\text{reg}} = -0.64 \delta \text{DTR}_\sigma - 0.23 \delta T_{m\sigma} + 0.11 \delta \text{RH}_m \]

\[\delta \text{OPAQ}_m \text{ to } \pm 0.04 \]
Monthly and daily bins

- Daily binning shows dependence of climate on cloud (radiation) and wind-speed
- Monthly anomaly analysis adds the lagged precipitation (soil moisture) dependence
 - RH, Q precip. memory as long as 5 months
- Asymmetric response to dry/wet precipitation anomalies
- **Observed coupling coefficients can be compared with model representations**
Warm Season Climate: $T > 0^\circ C$

- **Hydrometeorology**
 - *with Precipitation and Radiation*
 - *Diurnal cycle of T and RH*
 - Can’t ‘understand’ climate with T & Precip.

- **Monthly timescale coupling**
 - T_m depends on radiation not precip.
 - Q_m depends on precip. more than radiation
 - DTR, RH_x, RH_m, θ_{Ex}, P_{LCLx}: coupled to both
 - Sensitivity to precip. increases wet-to-dry, then falls with drought

http://alanbetts.com