Coupling between CO₂, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land

Alan K. Betts
Atmospheric Research, Pittsford, Vermont, USA

Brent Helliker and Joe Berry
Department of Global Ecology, Carnegie Institution of Washington, Stanford, California, USA

Received 5 December 2003; revised 8 April 2004; accepted 22 June 2004; published 17 September 2004.

[1] We propose a new approach for relating concentration measurements in the atmospheric boundary layer to surface fluxes based on a simple equilibrium boundary layer model (an extension of Betts [2000]). This is a major shift from the traditional focus on the growth of the daytime dry boundary layer. We show equilibrium solutions for the diurnally averaged properties of the boundary layer that link the mixed layer equilibrium (on timescales longer than a day) of potential temperature, water vapor, CO₂ (and other trace gases such as radon) with an interactive cloud layer and with the surface energy, water, and carbon balance. We examine these processes as a function of a set of external parameters: soil water content, which directly impacts respiration and photosynthesis, and hence transpiration; the surface net shortwave, directly linked to net radiation, which is also coupled to photosynthesis and transpiration; and the radiative cooling of the mixed layer (ML), which in the equilibrium model directly affects the surface sensible heat. We also show solutions where the net shortwave and radiative cooling are coupled to the cloud field. Our other variable model parameters are the properties of air entrained into the CBL, the midtropospheric values of vapor mixing ratio, CO₂ and radon, and the lapse rate above cloud base. We considered two idealized ecosystems: forest (based on observations in Wisconsin) and grassland (using parameter estimates from the literature) to show how the vegetation model affects the ML equilibrium. We show how the mass transport out of the subcloud layer and the mass exchange with the free troposphere couples the mixed layer equilibrium of water vapor, CO₂, and radon with the corresponding surface fluxes. We suggest that regional ML budgets may give useful constraints on regional carbon budgets, and that the coupling with the cloud field is a fundamental part of the ML equilibrium.

INDEX TERMS: 1818 Hydrology: Evapotranspiration; 1615 Global Change: Biogeochemical processes (4805); 3307 Meteorology and Atmospheric Dynamics: Boundary layer processes; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; KEYWORDS: boundary layer, CO₂ fluxes, energy and water fluxes

1. Introduction

[2] There is a current initiative in the carbon cycle community to develop methods to resolve regional to continental scale net CO₂ fluxes, largely in an effort to constrain larger scale estimates of the global carbon budget. Past efforts to obtain regional scale estimates of CO₂ flux have concentrated on the atmospheric boundary layer (ABL) as the regional flux integrator [Raupach et al., 1992; Denmead et al., 1996; Levy et al., 1999; Kuck et al., 2000; Lloyd et al., 2001]. The links between surface transpiration, ML depth and climate over the seasonal cycle are well established [Fitzjarrald et al., 2001]. Accurate ABL budgets are often constrained experimentally by accounting for flux divergence in the horizontal and through-cloud flux in the vertical [Fitzjarrald, 2002]. However, boundary layer budgets are difficult to close over the diurnal time scale, and a current focus is on coupling measurements with models that properly simulate the complex dynamics of the lower atmosphere over the diurnal cycle. On the other hand, the short-term dynamics of the ABL, when viewed over longer time scales, are captive to larger-scale processes that link the ascending and descending branches of the atmospheric general circulation. For example, it has been estimated that this flow of air from the ABL to the upper troposphere taken globally is sufficient to vent the total volume of the ABL in approximately 4 days [Cotton et al., 1995]. This upward circulation is closed by subsi-
dence, in which tropospheric air sinks as it cools radiatively and is entrained back into the ABL. Viewed in this context, the properties of the ABL averaged over several days should be near a steady state in which there is a rough balance in energy terms between surface evaporation and other energy fluxes and the large scale subsidence of warm dry air into the ABL. In this paper we explore the implications of these thermodynamic constraints on the boundary layer for interpreting the concentration of carbon cycle and other gases in the boundary layer. In our opinion, this argument is important because it provides a rationale for making flux measurements based on long-term averages of ABL properties. Two recent studies [Bakwin et al., 2004; Helliker et al., 2004] have demonstrated that the monthly average gradient in CO₂ concentration between the ABL and the adjacent free troposphere and a corresponding estimate of vertical velocity at the top of the ABL yield reasonable estimates of net CO₂ flux integrated over monthly intervals. Furthermore, if this argument is correct then it follows that models which correctly simulate the short-term dynamics of the lower atmosphere may not be sufficient to understand the CO₂ balance of the ABL over intervals longer than a few days, unless they represent the circulations on these longer timescales correctly.

[3] Over the oceans the diurnal cycle is small, and Betts and Ridgway [1989] proposed an equilibrium approach to the ABL budgets of water and energy, in which the radiatively driven subsidence, radiative cooling and the surface fluxes are in balance. The tropical circulation has broad regions where large-scale subsidence caps a remarkably uniform convective boundary layer (CBL) of shallow nonprecipitating cumulus clouds (the “trade winds”). Here the subsidence of dry air balances the large surface evaporation, while the radiative cooling of the moist CBL is balanced the subsidence of warm air though the inversion and a small surface sensible heat flux. This moist equilibrium CBL in turn feeds moisture to the precipitating convection in the ascending branches of the Hadley and Walker circulations, where the condensation heating lifts air in deep convective clouds to the upper troposphere. The circulation is closed in the subsiding trade wind branch, where air sinks at about 40 hPa day⁻¹, as it cools radiatively. So for the tropics as a whole, there is a rough balance in energy terms between surface evaporation, condensation heating, and net radiative cooling on timescales of a week or so [Betts and Ridgway, 1989]. Over the summer continents, away from the major monsoon circulations, there is also a rough balance between precipitation and evaporation. Consequently, Betts [2000] suggested a similar approach to the surface-ABL climate equilibrium over land by averaging over the diurnal cycle. He proposed an equilibrium model for the mixed subcloud layer (ML) over land, in which the diurnally averaged surface fluxes balance the fluxes through cloud base, and the other diabatic terms in the ML, such as radiative cooling and the evaporation of falling precipitation. This is the assumption that, as over the ocean, the ABL approaches a steady state or equilibrium between the surface and the overlying free troposphere, on timescales longer than a day. He showed the strong dependence of mean ML depth on vegetative resistance to evaporation, as well as the dependence on surface net radiative forcing. This idealized equilibrium boundary layer model [Betts, 2000] gave a reasonable representation of the observed trends with soil moisture of composite data from the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), and the trends with soil moisture of daily mean surface data from the European Centre for Medium-Range Forecasts (ECMWF) reanalysis. Betts [2000] simply specified vegetative resistance as a parameter.

[4] In this paper we extend this equilibrium model by adding a model for photosynthesis and respiration, largely as a function of soil moisture and incident radiation, and with an observational basis. This couples the CO₂ and water vapor fluxes at the surface (through vegetative resistance), and enables us to discuss the coupling of CO₂ and mixing ratio, q, in the ML. In addition, we add a radon model with constant surface emission rate to show how this scalar is coupled to ML structure and fluxes of water and CO₂ on timescales longer than a day. Radon is a naturally produced radioactive gas emitted by soils, but not water bodies, and it has a short (3.8 day) half-life in the atmosphere. This means there is a strong gradient of radon between the surface and free troposphere, which depends on the ML depth and the coupling of the ML to the layer above. The transports of radon, water vapor and CO₂ out of the ML are coupled, but the surface fluxes are different, so we shall show that their different equilibria provide different insights into the ML budget. Betts [2000] closed the ML solutions by specifying lapse rate and relative humidity just above the ML, and by requiring ML top to coincide with cloud base. The model showed that in general the ML balance required a moisture flux into clouds, unless there was strong subsidence of rather dry air above the ML. Here we make two further extensions. We will define an equilibrium shallow cloud layer, so that we can couple the entire convective boundary layer (CBL) to the entrainment or mass exchange at the CBL top, where we specify “free tropospheric” values of mixing ratio, CO₂ and radon. We can then determine the entrainment rate that will satisfy equilibrium of both the subcloud ML and the CBL as a whole. This corresponds quite closely to the radiative equilibrium subsidence rate, so the model is conceptually workable. The second extension will be to couple the surface net shortwave and the ML radiative cooling to the net cloud mass flux.

[5] The inspiration for the first extension to couple to the free troposphere came from observations. In a companion paper, Helliker et al. [2004] show that the monthly average vertical gradients of CO₂ and mixing ratio between the ML and the free troposphere, coupled with a single vertical exchange velocity, were qualitatively representative of the corresponding surface fluxes: net ecosystem exchange (NEE) and evaporation, as measured by eddy covariance. In our equilibrium model, the CO₂ and water vapor fluxes are coupled exactly, and the entrainment rate that we derive has just the magnitude of the equivalent vertical exchange velocity of Helliker et al. [2004]. The coupling of the CO₂ and water vapor structure is very tight in the ML [e.g., Betts, 2003], and if this coupling can be extended to the entire CBL, then the
vertical gradients can be used to estimate the NEE from the surface evaporation. Precipitation of water from clouds complicates the use of the water budget, so we explore the information in the ML radon budget. The decay of radon in the ML and cloud layers introduces additional terms, but they can be estimated with some precision, so the radon budget may provide an additional independent estimate of the vertical mass exchange. Our equilibrium model provides a framework for interpreting data, and moves us closer to the goal of using the integrating effect of the CBL to improve regional-scale estimates net surface CO₂ flux, and surface evaporation.

This equilibrium modeling approach represents a major conceptual shift from most of the research of the last two decades which has focused on the growth of the daytime dry BL and its mixing with the overlying atmosphere [De Bruin, 1983; McNaughton and Spriggs, 1986; Raupach, 1995, 2000, 2001]. Raupach [2000] shows that as the BL gets deeper, “equilibrium” is not reached within a semidiurnal timescale. Our 24-hour averaged model takes the perspective that the climate problem over land is fundamentally the description of the mean state (with a superimposed diurnal cycle) and the transition between these mean states, rather than the description of the daytime growing BL. In this paper, we present sensitivity studies of an idealized model without any observational validation or time-dependent modeling for comparison. However, Betts [2004] shows that the BL climate states over land and the coupling of processes at the surface in a fully time dependent model (the European Centre reanalysis) can be mapped with remarkable precision by the daily mean state and daily flux averages. Indeed although there is not strict equilibrium of the CBL on the 24-hour timescale, the nonstationarity can itself be seen in the fully time dependent system (as the CBL warms up on consecutive days, for example), and it is small.

There is a second profound conceptual shift in this paper: that the climate equilibrium over land is tightly coupled to the cloud field. In contrast, the references cited above focused on the growing dry convective BL. In our simple model, we couple the ML to cloud base and the radiation field to the CBL clouds. Once again, the global modeling analysis [Betts, 2004] with fully interactive prognostic clouds supports this analysis, and indeed shows that the coupling from a climate perspective is with the entire cloud field. Essentially, the source of all clouds is evaporation at the surface, coupled though the BL to both shallow and deep convection; and midlevel clouds are often the decay products of earlier convective systems. Although the cloud coupling we present here is primitive, we hope to develop this further in future work. Since the sources and sinks for CO₂ are also at the surface, its fate is coupled to the cloud field in a similar way. The sensitivity studies presented here use illustrative vegetation model parameters, taken in part from Wisconsin forest data and for grassland from the literature, and they will not be representative of all ecosystems.

2. Idealized Equilibrium Model

The conceptual framework of the model is summarized in Figure 1. It centers on a ML model for the subcloud layer, for which we shall determine the four variables: potential temperature, θₘ, mixing ratio, qₘ, CO₂ mixing ratio, Rₘ, and radon mixing ratio, Rₘ. There is a vegetation and energy balance model at the surface. Some of the surface variables, relative humidity, RHₛ, temperature, Tₛ, and saturation mixing ratio, qₛ(Tₛ), outside the leaf are shown, while others will be discussed later. Aerodynamic equations determine the surface fluxes from the gradients across the atmospheric surface layer, except for the radon flux that is specified. The thermodynamic variables at the base of the ML determine the lifting condensation level (LCL), which is taken as both cloud base and the top of the ML. Cloud base pressure is found as the difference of the surface pressure Pₛ and the pressure thickness Pₛ to the LCL. At the top of the ML, the entrainment fluxes (which balance the surface fluxes for q and CO₂) are determined by the jumps in θ, q, CO₂ and radon; and a mass flux, which is
found from the equilibrium solution. We need values just above cloud base, suffix cld, which will be discussed later. We do not solve for the full structure of the cloud layer (which is assumed to be a nonprecipitating cumulus layer), so we specify a CBL top at a pressure 350 hPa below the surface pressure, where “midtropospheric” values of q, CO₂, and radon are specified as upper boundary conditions, suffix t. We are able to satisfy simple budget equations for q, CO₂, and radon for the whole CBL, by specifying a constant subsidence in the cloud layer (a value also determined from the equilibrium) with constant divergence in the mixed subcloud layer. The actual pressure thickness of the cloud layer only plays a role in the radon decay equation (see later). We shall now discuss each of the components of the model in turn.

2.1. Surface Energy Balance

[9] The surface fluxes satisfy an energy budget. The daytime balance, suffix D, for time period tᵳ, is

\[tᵳ \cdot [SW_{netD} + LW_{netD} = R_{netD} = H₀ + \lambda E₀ + G₀] \]

where SW_{net}, LW_{net}, R_{net} are the net short-wave, long-wave and net surface radiative fluxes, H₀ is the sensible heat flux, E₀ the evaporation (which we shall later assume is stomatically controlled, so that our solutions do not represent disturbed conditions with evaporation off a wet canopy), \(\lambda \) is the latent heat of vaporization, and G₀ is the ground heat flux and heat storage in the canopy. We neglect the energy needed for photosynthesis.

[10] The nighttime balance, suffix N, for time period tᵢ, is

\[tᵢ \cdot [LW_{netN} = R_{netN} = Hᵢ + \lambda Eᵢ + Gᵢ] \]

Add (1) and (2) to get 24-hour total, and neglect net storage and night evaporation by setting

\[G₀ \cdot tᵳ + Gᵢ \cdot tᵢ + \lambda Eᵢ \cdot tᵢ = 0 \]

(3)

We have defined 24-hour mean fluxes as follows:

\[R_{net24} \cdot t_{24} = H_{24} + \lambda E_{24} \]

(4)

We express everything in terms of 24-hour fluxes, although we shall neglect evaporation at night by assuming E is photosynthetically controlled (see section 2.3). We absorb the typically downward nighttime sensible flux, which contributes to the stable BL at sunrise, into the 24-hour mean. This introduces a small hidden approximation, since the model of Betts [2000] couples \(H_{24} \) with an aerodynamic resistance to a skin-air temperature difference, so we are assuming a daytime, unstable transfer model for heat. One obvious extension would be to average over day and night separately. We have done this, but the solutions are not qualitatively different, so we do not present these solutions.

2.2. Radiative Fluxes

[11] We shall use only a simplified representation of the 24-hour short-wave and long-wave fluxes, which are needed to drive the energy balance (and in the next section, we couple photosynthesis to the shortwave flux). Figure 2 shows the coupling in model data between total cloud cover (TCC) and SW_{net24} (upper panel) and LW_{net24} (lower panel) from the ECMWF 40-year reanalysis (ERA-40) averaged over three Mississippi subbasins [see Betts et al., 2003] for the months June, July, and August, 1993–1999. The SW relationship is independent of basin, and reasonably represented by the dashed line shown

\[SW_{net24} = 300 - 200 \cdot TCC. \]
For the long-wave flux there is some variation between the basins, related to temperature (the Mississippi is the coolest basin) and humidity (the Missouri is the driest basin), which we shall ignore, since we will not have a full model for the structure of the convective boundary layer (CBL). The dashed line fit shown is slightly high for forests, but other terms in the energy balance such as G have been neglected, so this partly compensates. The actual photosynthetic energy absorbed (APPFD) depends on LAI and was modeled as

$$APPFD_{24} = PPFD_{24}^e(1 - \exp(-0.6*\text{LAI}))$$ \hspace{1cm} (8)

with LAI = 3 for grassland and 5 for forest. [14] We then compute the 24-hour mean photosynthetic uptake in $\text{mol m}^{-2} \text{s}^{-1}$ from APPFD$_{24}$ using

$$PPFD_{24} = -APPFD_{24}^e * \epsilon * f_{\text{stress}} * f_{\text{temp}}$$ \hspace{1cm} (9)

where the light use efficiency coefficient (ϵ) incorporates the efficiency of conversion of photons captured to CO$_2$ uptake, as well as the observation that light use efficiency increases as the ratio of direct to diffuse PPFD decreases.

$$\epsilon = E_{\text{veg}} * \text{PPFD}_{24}^{0.8501}$$ \hspace{1cm} (10)

with $E_{\text{veg}} = 6$ for forest (obtained by a fit to data) and 10 for grassland, to represent their inherently different light use efficiencies. A quadratic soil moisture stress term (f_{stress}), which is zero at a permanent wilting point of 0.137 and unity at 0.361, is defined as a function of fractional soil water content (SWC)

$$f_{\text{stress}} = -1.4694 + 13.1 * \text{SWC} - 17.341 * \text{SWC}^2$$ \hspace{1cm} (11)

A quadratic temperature stress term (f_{temp}), which is zero at 0°C and has a maximum at 26°C, is defined as a function of surface temperature, T_{sf} (units, °C)

$$f_{\text{temp}} = 0.0749 * T_{sf} - 0.0014 * T_{sf}^2$$ \hspace{1cm} (12)

2.4. Respiration

[15] The 24-hour gross respiration is parameterized, using the same soil water stress function, as

$$\text{RESP}_{fd24} = f_{\text{stress}} * \left[3.2 * Q_{10}^{0.1} * (T_{sf} - 10)\right].$$ \hspace{1cm} (13)

where 3.2 is the observed ecosystem respiration rate ($\text{mol m}^{-2} \text{s}^{-1}$) at 10°C and Q_{10} is the coefficient by which ecosystem respiration increases with temperature. The Q_{10} function (in brackets) is a basic kinetic function which accounts for the increase in molecular velocity (and hence respiration substrate velocity) as temperature increases by 10°C. Q_{10} of 2 would represent a doubling of the respiration rate for a 10°C increase in temperature [Salisbury and Ross, 1992]. We used $Q_{10} = 1.9$ for forest and 2.2 for grassland. Table 1 summarizes the three vegetation parameters used to represent the two idealized ecosystems.

2.5. Net Ecosystem Exchange

[16] Plant physiologists, and more recently some micrometeorologists, have adopted the use of flux density as opposed to velocity to describe trace gas fluxes. Flux densities are more desirable than velocities, because a calculated flux density is independent of pressure and

<table>
<thead>
<tr>
<th>Vegetation Parameters</th>
<th>Forest</th>
<th>Grassland</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAI in (8)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>E_{veg} in (10)</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Q_{10} in (13)</td>
<td>1.9</td>
<td>2.2</td>
</tr>
</tbody>
</table>
changes considerably less with temperature as compared to a calculated velocity. Hence, flux densities are more immediately comparable across sites and experimental conditions. However, velocities are more easily translated into one-dimensional calculations where all parameters (e.g., pressure) are prescribed and trace gas flux can be expressed as a change in mixing ratio per unit time. We convert both photosynthesis and respiration to units of velocity (ppm CO₂ m s⁻¹) from flux density (μmol CO₂ m⁻² s⁻¹) using the molar density conversion

\[\rho_{\text{mol}} = \frac{P_{sf}}{(8.314 \times (T_{sf} + 273.15))}, \]

where \(P_{sf} \) is the surface pressure in Pa, and 8.314 is the gas constant in J mol⁻¹ K⁻¹

\[\varphi_{\text{vel}} = \frac{\varphi_{\text{fl}}}{\rho_{\text{mol}}}, \]

RESP_{vel} = RESP_{fl}/\rho_{mol}. \]

The net ecosystem exchange, which represents the diurnally averaged flux of CO₂ at the surface in the ML CO₂ budget is just the sum

\[\text{NEE} = \varphi_{\text{vel}} \text{CO}_2 + \text{RESP}_{vel} \text{CO}_2. \]

2.6. Stomatal Resistance

[17] We compute leaf stomatal resistance from the photosynthetic flux and the substomatal-to-ambient CO₂ gradient

\[\text{R}_{\text{veg}} = \frac{(\text{CO}_2 - \text{CO}_2L)/(1.5 \varphi_{\text{vel}})}, \]

where the factor of 1.5 is the ratio of molecular diffusivities of H₂O to CO₂ (water diffuses faster than CO₂, so the effective resistance is less), and CO₂L, CO₂ are the CO₂ mixing ratios inside and outside the leaf. CO₂L will be computed from CO₂m in the mixed layer using an aerodynamic resistance at the surface, and CO₂ can be modeled as

\[\text{CO}_2 = \text{CO}_2L \times C_{\text{RH}}, \]

where

\[C_{\text{RH}} = 0.5833 + 0.1667 \times \text{RH}_{sf}, \]

is a function of the surface relative humidity. This relationship is based on the Ball-Berry model of stomatal resistance where CO₂L is linearly related to leaf surface relative humidity (assumed to be equal to surface relative humidity here [Ball, 1987]). In general, there is an interplay between the rate of CO₂ diffusion into a leaf and the biochemical assimilation rate of CO₂. As relative humidity increases, stomatal resistance decreases, and as a result CO₂L increases due to higher rates of diffusion into the leaf relative to the rate of biochemical uptake. The rate of biochemical uptake is assumed to always be greater than the rate of diffusion through wide-open stomata, such that at 100% relative humidity CO₂L is still less than CO₂L. This gives

\[\text{R}_{\text{veg}} = \text{CO}_2L/(1 - C_{\text{RH}})/1.5 \varphi_{\text{vel}} \text{CO}_2. \]

This photosynthetically determined stomatal resistance is then used to compute surface evaporation. We make the simplification that evaporation is entirely controlled by photosynthesis, which includes the approximation that there is no evaporation at night.

2.7. Method of Solution at Surface

[18] With \(R_{\text{veg}} \) given by (20), the equilibrium model of Betts [2000] is then solved by iteration. At the surface, we specify a range of SW_{net24} (or couple it to cloud mass flux, using (44a); see section 2.14, later) and find \(R_{\text{net24}} \) using (6c) to give LW_{net24}. We also specify soil moisture over a range, 0.16 to 0.32. This is the major factor controlling \(R_{\text{veg}} \) (see later). The aerodynamic resistance and surface pressure are specified, and the surface temperature (needed in (12), (13), and (14)) is found that satisfies the surface energy balance, (4), as in Montedeff [1981], using the following surface transfer equations:

\[H_{24} = \rho_{sf} C_{p} g_{a} (T_{sf} - T_{m}), \]

where \(\rho_{sf} \) is the surface air density, \(C_{p} \) is the specific heat, and \(g_{a} \) is an aerodynamic conductance, which will be specified. \(T_{m} \) is the temperature at the base of the ML, which we shall find from the mixed layer potential temperature, \(\theta_{m} \), using the Poisson equation

\[T_{m} = \theta_{m} (P_{sf}/100000)^{0.286}, \]

where \(P_{sf} \) is the surface pressure. The evaporation

\[E_{24} = \frac{\rho_{sf}(g_{a} g_{s} / (g_{a} + g_{v}))(q_{s}(T_{sf}) - q_{m})}{(1 - g_{v}/R_{\text{veg}})}, \]

involves \(q_{s}(T_{sf}) \), the saturation mixing ratio at \(T_{sf} \), as well as the additional conductance across the leaf, which is the inverse of the resistance

\[g_{v} = 1/R_{\text{veg}}. \]

ML mixing ratio, \(q_{m} \), is linked back to \(T_{m} \) and relative humidity \(R_{H_{m}} \) at the base of the ML, using equations in Appendix A, which are discussed later. For CO₂, we need to link the value outside the leaf to the mixed layer value

\[\text{NEE}_{24} = q_{a} (\text{CO}_2 - \text{CO}_2m). \]

For radon, we shall specify a constant surface flux. Mixed layer values, \(\theta_{m}, q_{m}, \text{CO}_2m \), as well as their values above the ML, are discussed in the next section, as they involve the cloud layer and its coupling to the free troposphere.

2.8. ML Equilibrium

[19] We consider a well-mixed layer with potential temperature, \(\theta_{m}, q_{m}, \text{CO}_2m \), and radon mixing ratio, \(R_{n_{m}} \) (see Figure 1), with jumps at ML top to
corresponding values just above cloud base in the shallow
cloud layer
\[\Delta h_b = \theta_{cld} - \theta_m \] \hspace{1cm} (22a)
\[\Delta q_b = q_{cld} - q_m \] \hspace{1cm} (22b)
\[\Delta \text{CO}_2 b = \text{CO}_2 \text{cld} - \text{CO}_2 m \] \hspace{1cm} (22c)
\[\Delta \text{RH}_b = \text{RH}_{cld} - \text{RH}_m. \] \hspace{1cm} (22d)

Following Betts [2000], ML top is specified as cloud base,
the lifting condensation level (LCL) of ML air with
properties \((\theta_m, q_m)\), so that ML depth, \(h\) is given by
\[h = h_{LCL}(\theta_m, q_m, P_{sf}) \hspace{1cm} (23) \]

This close closure will be justified, when we solve the
coupled system for the mass flux out of the ML (see
section 2.12 and Figure 7b, later). At cloud base (suffix b),
we couple the fluxes with a mass flux exchange, \(\rho_b W_b\)
[Betts, 1975]: the product of a cloud base velocity, \(W_b\), and
the density of dry air at the base of the cloud layer. Note that
the specification of ML top as cloud base fundamentally
changes the equilibrium surface energy balance by introdu-
cing one component of the coupling to the cloud field. (We
shall introduce a second radiative component later in
section 2.14.) In contrast, traditional analyses of equilibrium
condensation (see reviews by Raupach [2000, 2001]) are
essentially dry models, which do not include these direct
impacts of the lifting condensation level. The interpretation
of an “equilibrium” cloud base in terms of real data, which
will show the strong daytime diurnal cycle, with uncoupling
of the stable BL at night is not straightforward. However,
we will put aside these difficulties, in order to explore the
idealized solutions. Betts [2004] does provide some
justification for this by showing that the climate coupling
over land can be described in terms of the 24-hour mean
states of the boundary layer.

[20] The mixed layer equilibrium for \(q\) and \(\text{CO}_2\) are just
the balance of the surface and cloud base fluxes.
\[F_{24} = -\rho_b W_b \Delta q_b = E_b \] \hspace{1cm} (24a)
\[\rho_b \text{NEE} = -\rho_b W_b \Delta \text{CO}_2 b. \] \hspace{1cm} (24b)

If the dry air densities are both converted to molar densities
by multiplying by the constant factor (1000/28.97), related
to the conversion from Kg to g, and the molecular weight of
dry air, we retrieve the \(\text{CO}_2\) flux density in \(\mu\)mol \(\text{CO}_2\)
\(m^{-2}\) \(s^{-1}\).

[21] The heat balance contains an additional term for the
net radiative cooling of the ML, \((d\theta/dt)_{rad}\) which we specify
as an external parameter (or couple to the cloud mass flux:
see section 2.14 later).
\[\alpha_{sf} H_{24} = -\rho_b W_b \Delta \theta_b - \rho_b h_{LCL}(d\theta/dt)_{rad}, \] \hspace{1cm} (24c)

where \(h_{LCL}\) is the depth of the subcloud layer (with mean
density \(\rho\)), and \(\alpha_{sf} = (\theta/\theta_j)_{sf}\) is approximately unity, unless
the surface pressure is far from 1000 hPa. It is convenient to
rewrite (24c) as
\[\alpha_{sf} H_{24} = -\rho_b W_b \Delta \theta_b + F_{rad}, \] \hspace{1cm} (25)

where the radiative flux divergence across the ML is
defined positive as
\[F_{rad} = -\rho h_{LCL}(d\theta/dt)_{rad} = (P_{LCL}/g)(d\theta/dt)_{rad}. \] \hspace{1cm} (26)

It is also convenient to define the pressure height of cloud
base
\[P_{LCL} = \rho g h_{LCL}. \] \hspace{1cm} (27)

The relative humidity at the base of the ML is related to the
LCL, so that it can be computed from \(P_{LCL}\). Appendix A
summarizes the general relationship between RH and \(P_{LCL}\),
which we use in the model solution. To solve the ML
equilibrium, we use the inverse relationship to give \(\text{RH}_m\) at
the base of the ML (equation (A3)), and from this find \(q_m\)
using (A4) and \(T_m\).

2.9. Upper Boundary Conditions for ML

[22] Closing the ML equations requires values for \(\theta_{cld}, q_{cld}, \text{CO}_2 \text{cld}\) and \(\text{RH}_{cld}\) just above cloud base as a function of
ML depth and the stratification above. As in Betts [2000],
we do not solve for the thermodynamic structure in the
cloud layer, but make two simplifications. We define
\[\theta_{cld} = 296 + \Gamma(P_{LCL} - 60), \] \hspace{1cm} (28)

where \(\Gamma\) is \(-d\theta/dp\) is a measure of the stratification in
the cloud layer. The 296 K sets the mean temperature of the
model system. We find \(q_{cld}\) by constraining the subsatura-
tion or \(\text{RH}_{cld}\) just above cloud base (shallow cumulus layers
are characterized by having nearly constant subsaturation
below their capping inversion), again using the relation
between LCL and RH, shown in Appendix A. Betts [2000]
simply specified a range, but to reduce the number of free
parameters, here we shall couple subsaturation in the cloud
layer \(P_{LCL,cld}\) and \(\text{RH}_{cld}\) back to the ML pressure depth
using an empirical relation
\[P_{LCL,cld} = 50 + 0.3(P_{LCL} - 60). \] \hspace{1cm} (29)

Figure 3 shows that this relation constrains cloud layer
\(\text{RH}_{cld}\) to decrease from 72% to 37% as the depth of the
subcloud layer increases from 100 to 300 hPa (roughly 1000
to 3000 m), that is, as the ML gets deeper and drier.
Equations (28) and (29) are simplifications which replace
the more difficult task of solving for the coupled
thermodynamic structure in the cloud layer, which includes
the solution for the radiation field in a partially cloudy CBL
(recall that in (24c) we specify the radiative term).

2.10. Radon Submodel

[21] Radon is produced in the soil from decay of radium
at a constant rate and the rate of emission from the soil is
approximately constant. Radon decays with a half-life of
For our analysis we used a constant FRn of 0.021 Bq m⁻³ where Ld is the decay constant for radon, 2.089 where FRn is the surface flux of radon, and Wdm represents the radon decay velocity scale for the ML, given by

\[F_{Rn} = -\rho_b W_b \Delta Rn_b + Rn_m \ast \rho W_{dm}. \]

where FRn is the surface flux of radon, and Wdm represents the radon decay velocity scale for the ML, given by

\[\rho W_{dm} = \rho_{h_{LCL}} \ast L_d. \]

where Ld is the decay constant for radon, 2.089 x 10⁻⁶ s⁻¹. Using (26), replaces h_{LCL} in (27) with the pressure thickness

\[\rho W_{dm} = (p_{LCL}/g) \ast L_d \]

For our analysis we used a constant FRn of 0.021 Bq m⁻³ s⁻¹. Typical concentrations of radon are about 0.4 Bq m⁻³ at STP (standard temperature and pressure) in the free troposphere, and 1.8–3.7 Bq m⁻³ in the ML [Kritz et al., 1998].

\[[24] CO_2 and radon are transported out of the subcloud layer into clouds, and then mixed through the cloud layer, but they can be considered passive tracers during this process (except for the radon decay). We shall solve for the cloud base mass flux using (24a), but we need a further closure to give values for CO_{2cld} and Rn_{cld} in (22c) and (22d). For this we consider the equilibrium of the CBL as a whole.

2.11. CBL Equilibrium

The condensation, upward advection, and evaporation of liquid water in shallow cumulus clouds are a destabilizing process [Betts, 1973, 1975], and the CBL will deepen, entraining warm dry air from above, unless there is a compensating subsidence. In the subsiding branches of the atmospheric circulation, such as the trade winds over the oceans, the radiatively driven subsidence, which is of order 0.005 m s⁻¹ or 0.05 Pa s⁻¹, balance the CBL growth by entrainment [Betts and Ridgway, 1988, 1989]. Suppose such an equilibrium is also established in the long-term over land with subsidence balancing an entrainment velocity, W_e. If we suppose there is constant subsidence in the cloud layer (that is, all the mass divergence is in the ML), the equilibrium CO₂ budget for the whole CBL is just

\[\rho_{df} \text{NEE} = -\rho_b W_{Eb}(CO_{2t} - CO_{2m}), \]

where CO_{2t} is the value in the “free troposphere,” which we shall consider fixed at 365 ppm. We have again defined a mass flux at cloud base corresponding to the subsidence, which being constant above cloud base, satisfies

\[\rho_b W_{Eb} = \rho_l W_{El}. \]

Following conventional meteorological practice, we shall solve the system in pressure coordinates to absorb the density variation with height. Equation (31) gives a direct solution for CO_{2m}, as a balance between the surface NEE and the free tropospheric entrainment, given the vertical mass flux \(\rho_b W_{Eb} \). The equivalent equilibrium equation for mixing ratio is

\[E_{24} = -\rho_b W_{Eb}(q_0 - q_m), \]

where q_0 is a “free tropospheric” mixing ratio, above the CBL, typically in the range 1 to 4 g Kg⁻¹. This can then be inverted to give the mass exchange

\[\rho_b W_{Eb} = E_{24}/(q_m - q_0). \]

Equations (24a) and (33) can both be satisfied. We use (24a) to determine the total cloud base mass exchange as part of a fully coupled ML equilibrium, and then (33) to diagnose the smaller subsidence or mass exchange needed to maintain the CBL equilibrium. A little manipulation shows that the values above cloud base satisfy

\[q_{cld} = q_l + E_{24} \ast \rho_b W_{CLD}/(\rho_b W_b \ast \rho_b W_{Eb}) \]

CO₂_{cld} = CO₂_t + \rho_{df} \text{NEE} \ast \rho_b W_{CLD}/(\rho_b W_b \ast \rho_b W_{Eb}),

where we have defined a net cloud mass flux

\[\rho_b W_{CLD} = \rho_b W_b - \rho_b W_{Eb} \]

as a measure of an additional “cloud” mass exchange needed to pump sufficient water vapor out of the ML to satisfy the ML component of the equilibrium model. Equations (34a) and (34b) show that q_{cld} > q_l and CO₂_{cld} > CO₂_t, provided W_{CLD} > 0. The extra cloud flux modifies the layer above cloud base, and balances the mean subsidence in this same layer. We shall find that if evaporation is very low, so that the ML becomes very deep, then W_{CLD} goes to zero, and the conceptual cloud field disappears (see section 3.2), and unmodified “free tropospheric” air is entrained into the ML.
Table 2. Parameter Ranges Used for Model Solutions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default: Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic conductance: (g_a)</td>
<td>0.025: m s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Entrainment parameter: (k)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Soil water content: (SWc)</td>
<td>0.15 to 0.35</td>
<td></td>
</tr>
<tr>
<td>Net shortwave: (SW_{net})</td>
<td>150 to 250 W m(^{-2})</td>
<td></td>
</tr>
<tr>
<td>Stratification above ML: (\Gamma)</td>
<td>0.04 to 0.07</td>
<td></td>
</tr>
<tr>
<td>Humidity above ML: (RH_{ml})</td>
<td>modeled</td>
<td></td>
</tr>
<tr>
<td>BL radiative cooling rate</td>
<td>(-2) to (-3^\circ)</td>
<td></td>
</tr>
<tr>
<td>CO(_2) above CBL</td>
<td>365 ppm</td>
<td></td>
</tr>
<tr>
<td>q(_a) above CBL</td>
<td>1 to 4</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\)Cloud-coupled solutions given by equations (45a) and (45b) were also used.

2.12. Coupling of Transports in CBL

[27] For an equilibrium CBL, (31) and (33) link the surface NEE and \(E \) to a common mass transport and a gradient between the ML and the free troposphere. Dividing (31) by (33) gives

\[
\rho_a \text{NEE}/E_{24} = \frac{(CO_2t - CO_2m)}{(q_h - q_m)}. \tag{39}
\]

In a companion paper, Helliker et al. [2004] use (39) to estimate NEE over the annual cycle from measurements of surface evaporation and the vertical gradients of \(CO_2 \) and \(q \) between the ML and midtroposphere.

2.13. Closure and Method of Solution

[28] As in Betts [2000] (based on the earlier papers of Betts [1973] and Tennekes [1973]), we use a ML closure on the virtual potential heat flux

\[
H_{vb} = -k \frac{F_{rad}}{(k + 1)}. \tag{40}
\]

where the virtual potential heat flux can be approximated as

\[
H_v = \alpha H + 0.075 \lambda E. \tag{41}
\]

The coefficient is 0.608 \(\theta (C_p/\lambda) = 0.075 \) at \(\theta = 302 \) K, and it will be treated as a constant. Substituting (24a) and (25) in (40) and rearranging gives

\[
H_{vb} = -k \frac{F_{rad}}{(k + 1)}. \tag{42}
\]

Since \(\alpha_h H_h = H_{vb} - 0.073 \lambda E_h \), we can, using (42), (25), (24a), and (4), solve for

\[
\alpha_h H_h = -\rho_b W_b \frac{\Delta \theta_h}{k} = [-k \frac{F_{rad}}{(k + 1) - 0.075(R_{net24} - F_{rad})}] / (1 - 0.073). \tag{43}
\]

This form of the solution is useful because it does not depend on the surface energy flux partition. The similar solution for the surface heat flux is

\[
\alpha_{sf} H_{sf} = [F_{rad}/(k + 1) - 0.075R_{net}] / (1 - 0.075). \tag{44}
\]

Since \(F_{rad} \) is proportional to ML depth, \(h_{LCL} \), from (26), equation (44) determines the surface sensible heat flux as a linear function of \(P_{LCL} = \rho g H_{LCL} \), as long as the ML radiative cooling rate is a constant. The surface heat flux is primarily controlled by the depth of the ML and its radiative cooling rate [Betts, 2000]. In fact, all the fluxes at both top and bottom of the ML are then linear functions of \(P_{LCL} \), so we shall use this as a coordinate in many figures.

[29] Table 2 shows the set of specified external parameters, their default values and the ranges used, if they were varied. We find equilibrium solutions iteratively. Starting with a guess of \(P_{LCL} \), we find \(\theta_{ml} \) and \(P_{LCL,ml} \) from (28) and (29), which also gives us \(q_{ml} \). A first guess of \(\Delta \theta_b \) gives \(\theta_{mb} \), and \(q_{mb} \) is found from \(RH_{mb} \) at the base of the ML, as it is a unique function of \(P_{LCL} \) (see equation (A3)). From \(\theta_{mb} \) and \(q_{mb} \), we can find a \(T_{sf} \) that gives an \(H \) and \(\lambda E \) that satisfy (4), with \(R_{veg} \) given by (20). An iteration is needed on \(R_{veg} \), since it is a weak function of \(T_{sf} \) and \(RH_{sf} \). Then \(P_{LCL} \) can be updated from (44) using (26). \(\Delta \theta_b \) can be updated from (43) by finding \(\rho_b W_b \) from (24a) and (22b). Solutions for the \(CO_2 \) structure follow from (33'), (31), and (24b). \(CO_2m \) has a weak impact on \(R_{veg} \). Solutions for radon then follow from (38).

2.14. Cloud-Coupled Solutions

[30] The formation of clouds at the top of the ML introduces two feedbacks. ML top is constrained to the
LCL, as represented by (23), and the cloud field has a radiative impact. For two variables, surface net short-wave and ML radiative cooling rate, which both depend on cloud-cover, in addition to using parameter ranges in Table 2, we also defined “cloud-coupled” values, using these simple closures related to the net cloud mass flux, given by (35).

\[
\text{SW}_{\text{net}} = 250 - 100\rho_b W_{\text{CLD}}/0.01 \quad \text{for } \rho_b W_{\text{CLD}} > 0;
\]
and 250 for \(\rho_b W_{\text{CLD}} < 0 \) \hfill (45a)

\[
(\frac{d\theta}{dt})_{\text{rad}} = -3 + \rho_b W_{\text{CLD}}/0.01 \quad \text{for } \rho_b W_{\text{CLD}} > 0;
\]
and \(-3\) for \(\rho_b W_{\text{CLD}} < 0 \). \hfill (45b)

In the range of solutions, \(0 < \rho_b W_{\text{CLD}} < 0.01 \), (44a) and (44b) give the same ranges shown in Table 2, namely, 250 > \(\text{SW}_{\text{net}} >150 \text{ Wm}^{-2} \) and \(-3 < (d\theta/dt)_{\text{rad}} < -2 \text{ K day}^{-1} \), that is the net short-wave and ML cooling rate decrease as the cloud mass flux increases. Over the same range, the surface \(\text{LW}_{\text{net24}} \), which satisfies (6c), increases from \(-80\) to \(-40 \text{ Wm}^{-2} \). The range of daily net SW radiation that we present is consistent with undisturbed conditions in summer.

3. Equilibrium Solutions

[31] We shall show the sensitivity of the equilibrium solutions to the parameter ranges shown in Table 2 and in addition, some figures will also show the cloud-coupled solutions, using (45a) and (45b). Since all fluxes are 24-hour means, we will drop the suffix 24 in the figures.

3.1. Sensitivity to Soil Moisture and ML Depth

[32] This sensitivity is the strongest control on vegetative (stomatal) resistance, so we first show the equilibrium solutions with varying SWC for three values of \(\text{SW}_{\text{net}} \) (we could have shown \(R_{\text{net}} \) instead, since the SW and LW fluxes are coupled through (6c)), with the stratification, ML cooling rate and \(q_t \) set at their default values, shown in Table 2.

[33] Figure 4a shows that \(R_{\text{veg}} \) increases sharply, as SWC drops toward the model permanent wilting point of 0.137, since \(R_{\text{veg}} \) is affected by the stress function \(f_{\text{stress}} \) in (11)). Surprisingly, however, except at very low SWC, there is almost no dependence on \(\text{SW}_{\text{net}} \). This arises from a cancellation of effects in (20). Photosynthesis increases with \(\text{SW}_{\text{net}} \), but changes in \(\text{CO}_2 \) and \(RH_{\text{sf}} \) at the leaf largely compensate in (20). This simplification, which appears to be a characteristic of the Wisconsin forest data, leads to a reduced variability in the \(\text{CO}_2 \) budget in later figures. Figure 4b shows that the equilibrium ML depth increases sharply as SWC decreases (and stomatal resistance increases), as reduced evaporation leads to a warmer drier equilibrium ML; and also increases as the radiative driver, \(\text{SW}_{\text{net}} \), increases the surface energy fluxes. The left-hand scale shows ML depth as a pressure thickness, which we shall use in subsequent figures; and the right-hand scale shows the corresponding depth to cloud base in meters (with slight approximation). The heavy dashed line is the single cloud-coupled solution, derived by making a further iteration to satisfy (45a) and (45b) as well.

[34] Figures 5a and 5c show the surface energy fluxes as a function of SWC (left) and \(P_{\text{LCL}} \) (right). Figures 5b and 5d show the corresponding daily mean evaporative fraction, defined as

\[
\text{EF} = \lambda E/(H + \lambda E).
\] \hfill (46)

We shall discuss the family of fixed \(\text{SW}_{\text{net}} \) curves first. As expected, Figure 5a shows that for fixed \(\text{SW}_{\text{net}} \) evaporation increases and sensible heat flux decreases non-linearly as SWC increases, since \(R_{\text{veg}} \) decreases (Figure 4a), while both fluxes increase as the surface radiative forcing \(\text{SW}_{\text{net}} \) increases. Figure 5b shows that the increase of EF with SWC is almost independent of \(\text{SW}_{\text{net}} \) (this follows from the very weak dependence of \(R_{\text{veg}} \) on \(\text{SW}_{\text{net}} \) in Figure 4a). Figure 4c shows that the surface fluxes are linear functions of ML pressure thickness as discussed in section 2.13. As \(\text{SW}_{\text{net}} \) increases (and \(R_{\text{net}} \) with it using (6c)), evaporation increases, but the surface sensible heat flux changes little, as (44) shows it depends primarily on \(F_{\text{rad}} \). Consequently, for a given ML depth, EF increases with surface radiative forcing.
Note that the left and right panels give quite a different perspective on the surface energy balance. As a function of soil water, the fluxes are nonlinear, but EF is only a weak function of SW_{net}. As a function of ML depth, the fluxes become linear, because the energy balance terms are proportional to depth. However, whereas at a given SWC, H increases with SW_{net}, for a given ML depth, H decreases slightly with SW_{net}, because of the large increase of equilibrium depth with solar forcing, shown in Figure 4b.

The upper panels show that our cloud-coupled model (heavy dashes) has a significant impact on the fluxes. H becomes nonlinear, primarily because the ML radiative cooling rate increases from wet to dry soils (the corresponding cloud mass flux will be shown later in Figure 8b); while the latent heat flux has very little variation, as R_{net} increases significantly from wet to dry soils from (45a) and (6c). However, the lower panels show that the corresponding impact on EF is rather small.

Figure 6 shows the corresponding set of plots as a function of SWC on the left and PLCL on the right for q_m and q_{m} (upper panels) and CO$_2$ and radon (lower panels). The cloud-coupled solutions, shown in Figures 6a, 6b, and 6d, intersect the family of fixed SW_{net} solutions because of the variation of SW_{net} given by (45a). The cloud-coupled solutions for Figure 6c are indistinguishable from the plots for $SW_{\text{net}} = 200$ W m$^{-2}$, and are not shown. We see, as expected, that the ML gets warmer and drier as SWC decreases and the ML deepens. As a function of SWC (Figure 6a), θ_m and q_m also get warmer and drier with SW_{net}. However, when plotted as a function of PLCL (Figure 6c), the ML gets slightly warmer and wetter as the surface SW_{net} increases, as discussed in Betts [2000]. In terms of the model, equations (28) and (29) determine q_{cld}, q_{cld} just above the ML from PLCL. The jump Δq at cloud base decreases slightly as the cloud base mass flux increases with SW_{net} (see section 3.2), so that θ_m increases slightly. In the moisture budget, the λE increases faster with SW_{net} than the cloud base mass flux, so that the jump Δq at cloud base increases in magnitude, and so q_m increases.

Figure 6b and 6d show the corresponding plots for ML CO$_2$ and radon. For radon, where the surface flux is constant, the ML equilibrium depends strongly on the radiative forcing, since this affects the cloud base flux (see next section), so R_{m} decreases in both Figures 6b and 6d as SW_{net} increases. For CO$_2$, the decrease with increasing SWC or decreasing ML depth at constant SW_{net} follows from the increasing photosynthesis as fstress in (11) approaches unity. As a function of SWC, NEE depends
rather weakly on SW net (see Figure 7a), so that CO$_2$m increases with SW$_{net}$, as the cloud base mass flux increases, transporting more (low) CO$_2$ out of the ML. However, as with q$_m$, as a function of P$_{LCL}$, we see the reverse; CO$_2$m decreases weakly with increasing surface solar forcing.

Figure 7a shows the increase of both photosynthesis and respiration with increasing SW$_C$ and SW$_{net}$. The difference between the two curves is the NEE, which increases over wetter soils, but has rather a weak dependence on SW$_{net}$, except over dry soil, when NEE is reduced. This insensitivity of NEE to SW$_{net}$ is again related to the very weak dependence of R_{veg} on SW$_{net}$ shown in Figure 4a. This, in turn, leads to the tight coupling between ML CO$_2$m and q$_m$ shown on the left-hand scale of Figure 7b, which is almost insensitive to net shortwave (as can be deduced from Figures 6c and 6d). However, the link between NEE and CO$_2$m shown on the right-hand scale, is strongly dependent on SW$_{net}$, because CO$_2$m is directly coupled to the vertical exchange, shown in the next section. The cloud-coupled equilibrium solution is more nonlinear.

3.2. Vertical Mass Fluxes

As part of the solution, we determine two equilibrium mass fluxes: the mass exchange, $\rho_b W_b$, at the top of the mixed layer which balances the surface fluxes in (24); and the mass exchange, $\rho_b W_{Eb}$, with the free troposphere above the CBL, which balances the surface fluxes in (31) and (33). These are both shown in Figure 8a as a function of SW$_{net}$ and for the cloud-coupled solution. For the specified SW$_{net}$ family, the mass exchange, $\rho_b W_{Eb}$, with the free troposphere needed to give CBL equilibrium, increases weakly with ML depth, and sharply with SW$_{net}$. The mass exchange, $\rho_b W_b$, which balances the ML budgets also increases with SW$_{net}$, but falls steeply as the ML deepens, so that each pair crosses near a ML depth of 280 hPa. (This exact value of course depends on many internal parameters of the model, as well as the specified external boundary conditions.) The heavy dashed curves show the cloud-coupled solutions, which have a similar intersection, but cut across the family of SW$_{net}$ curves. The difference between each pair of curves is the additional “cloud” mass flux, $\rho_b W_{CLD}$, defined in (35), and it is shown in Figure 8b. This cloud mass flux does increase with SW$_{net}$, but all the curves fall steeply as the ML deepens to cross zero at a depth near 280 hPa. Above this ML depth, the total mass exchange at cloud base is less than the equilibrium subsidence, and q$_{CL,t} < q_t$, and the model with a cloudy boundary layer becomes physically unrealistic. Below 280 hPa, $\rho_b W_{CLD}$ is a measure of the extra “cloud” mass exchange needed to pump sufficient water vapor out of the ML to satisfy the ML component of the equilibrium.
model. Above this ML depth threshold, we could consider that the solutions to the dry ML model would be appropriate, without the condition that the top of the ML also be cloud base. The cloud-coupled solution is almost linear with ML depth, so that (45a) and (45b) also give almost a linear variation of SWnet and (dq/dt)rad with ML depth.

One general and important conclusion is that unless SWC becomes very low so that the ML becomes very deep, the assumptions of the model can be satisfied, with cloud base at the top of the ML and a shallow cloud field above in balance with weak large-scale subsidence. For shallow MLs, much stronger subsidence (equal to r_bW_b in Figure 8a) is needed to suppress the cloud field, and give a BL without clouds. We see from Figure 6d that ML radon concentrations are rather sensitive to the cloud base exchange, and therefore might be a useful way of estimating it, provided estimates of the surface radon flux are available.

3.3. Sensitivity to Mixing Ratio Above the CBL

In the next three sections we shall select one parameter range from Table 2 and keep the others at their defaults. For brevity, we shall not show the cloud-coupled solutions because they give rather similar families of curves, which for the most part can be qualitatively inferred from the plots in the previous sections. The mixing ratio q_t of the “free troposphere” above the CBL has no direct effect on the energy balance of the ML or on its thermodynamic solutions for h_m and q_m, but it does impact the mass flux p_bW_Eb through (33). Figure 9a shows that while the cloud base exchange, p_bW_b, is constant (for default SWnet = 200 Wm$^{-2}$; it has a small variation for the cloud-coupled solution, not shown), p_bW_Eb derived from (33) increases with q_t, with the corresponding shift of the entire net cloud mass flux profile shown in Figure 9b. Essentially the ML stays the same, but a larger cloud mass flux compensates for the drier air entrained at CBL top. This change in p_bW_Eb has a

Figure 7. (a) Dependence of photosynthesis and respiration on SWC and SWnet. (b) Coupling between q_m and CO$_2$m (left-hand scale), and CO$_2$m and net ecosystem exchange (right-hand scale) as a function of net shortwave. See color version of this figure in the HTML.

Figure 8. (a) Mass exchange at cloud base, and with free troposphere above CBL as a function of net short-wave. (b) Corresponding net cloud mass flux. See color version of this figure in the HTML.
corresponding impact on the ML equilibrium for CO$_2$m and radon, shown in Figure 10. As passive scalars, both move closer to their values in the "free troposphere" as the r_{bWEb} increases. As shown in Figure 11, this affects the coupling between CO$_2$m and q_m, which is not affected by q_t; and between CO$_2$m and NEE, since NEE is almost unaffected by these changes in CO$_2$m (not shown). We can conclude, not surprisingly, that if we are to relate the moisture structure and fluxes to the CO$_2$ structure and NEE, we need to know both the mixing ratio and CO$_2$ content of air entrained into the CBL.

3.4. Sensitivity to Stability

The stability parameter G controls potential temperature above cloud base, θ_{cld}, through (28) and also q_{cld}, since (29) determines λE_{cld} as shown in Figure 3. We performed sensitivity studies to stability, but for brevity we do not show these figures. Increasing stability warms and moistens the ML significantly. The impact on CO$_2$m is relatively small, while ML radon increases, because the vertical mass exchanges are reduced as a partial compensation for the increases in q_m and q_{cld}. In the CO$_2$ budget, the drop in the mass exchange at the top of the ML is largely compensated by a fall in the NEE, primarily caused by warmer surface temperatures increasing respiration. As a function of ML depth, the surface H and λE are independent of G, but the warming of q_m and q_m changes the surface energy budget and NEE in relation to the SWC, which could be considered an independent surface variable. For the same SWC, P_{LCL} gets shallower as G increases, and E_{F} increases. Essentially we found that warmer temperatures in the cloud layer (which may be linked to warmer temperatures in the middle troposphere) warm and moisten the ML, lower cloud base, increase evaporation and reduce the sensible heat flux and NEE. However, a better representation of the temperature structure of the CBL is needed.

Figure 9. (a) As in Figure 8a as a function of q_t above the CBL. (b) Corresponding net cloud mass flux. See color version of this figure in the HTML.

corresponding impact on the ML equilibrium for CO$_2$m and radon, shown in Figure 10. As passive scalars, both move closer to their values in the "free troposphere" as the r_{bWEb} increases. As shown in Figure 11, this affects the coupling between CO$_2$m and q_m, which is not affected by q_t; and between CO$_2$m and NEE, since NEE is almost unaffected by these changes in CO$_2$m (not shown). We can conclude, not surprisingly, that if we are to relate the moisture structure and fluxes to the CO$_2$ structure and NEE, we need to know both the mixing ratio and CO$_2$ content of air entrained into the CBL.

[42] A typical radiative equilibrium subsidence rate above the CBL at warm temperatures is 0.05 Pa s$^{-1}$ [e.g., Betts and Ridgway, 1989], corresponding to a mass flux (dividing by 9.8 m s$^{-2}$) of 0.005 kg m$^{-2}$ s$^{-1}$ in Figures 8a and 9a, at the lower end of the range for r_{bWEb}, the mass exchange necessary to keep the CBL from moistening. In other words, a subsidence rate of r_{bWEb} is needed to keep the CBL from growing deeper, given that the air being entrained into the CBL has mixing ratio q_t. Conversely, if the subsidence, whether radiatively or dynamically driven, is less than r_{bWEb} in Figure 8a, then the CBL cannot be in equilibrium, and we could interpret the difference as a CBL growth rate. Such a growth rate would be small: for example, a growth of 0.02 Pa s$^{-1}$ corresponds to only 20 hPa day$^{-1}$, so the ML equilibrium solutions could be quite well satisfied over timescales of several days. If the CBL does deepen beyond the middle troposphere, then the growth of precipitation particles, and their evaporation as they fall, will introduce additional processes that we have not considered in our simple model.

Figure 10. Dependence of ML CO$_2$m and radon on q_t above the CBL. See color version of this figure in the HTML.
rather than our simple specification of a stability parameter. This requires modeling the cloud layer with a coupled radiation code.

3.5. Sensitivity to ML Radiative Cooling Rate

The ML radiative cooling rate and the ML depth control the surface sensible heat flux through (26) and (44). Figure 12 shows the impact on the equilibrium ML as a function of SWC, keeping fixed the other parameters in Table 2 (SWnet = 200 W m$^{-2}$, $q_s = 3$ g kg$^{-1}$, $\Gamma = 0.06$ K hPa$^{-1}$). As the ML radiative cooling rate increases, the ML becomes cooler, H increases and λE decreases; and both ML depth and EF decrease. Figure 13 shows that the mass exchange terms, $\rho_b W_b$ and $\rho_b W_{Eb}$, both decrease, because of the decrease of evaporation. As a function of ML depth, Figure 14a shows that the ML actually gets cooler and drier as ML radiative cooling increases, while both CO_{2m} and radon increase (Figure 14b). The fall of ML depth with increased cooling shown in Figure 12 means that, as in Figure 6, as a function of SWC, CO_2 decreases, and q_{m} increases with ML radiative cooling (not shown). Figure 15 shows that while the coupling between CO_{2m} and NEE changes with ML radiative cooling (respiration decreases as the ML cools), that between CO_{2m} and q_{m} is almost unaffected. Comparison of Figures 12–15 with Figures 4–8 shows that the response of the ML equilibrium to increased surface radiative forcing from 200 to 250 W m$^{-2}$ is qualitatively similar to the response of reduced radiative cooling of the ML from -3 to -2 K day$^{-1}$, except for EF, where the impact of F_{rad} on H_{24} in (44) is large.

3.6. Dependence on Vegetation Type

We model two idealized ecosystems, forest and grassland, represented by the three different vegetation parameters given in Table 1. For grassland, both photosynthesis and respiration are greater for the same SWC, SWnet and surface temperature. Figure 16 shows that as a function of SWC (other parameters set at their defaults in Table 2), EF increases for grassland and ML depth decreases, both a direct response to increased photosynthesis, and reduced R_{veg}. Consequently as a function of SWC, for grassland, the ML is cooler, moister, and has lower CO_{2m} (not shown). However, as a function of ML depth, the picture again changes and simplifies, as in Figure 6. The ML q_{m}, q_{m}, radon, all the mass fluxes and energy fluxes are independent of ecosystem: the lower grassland R_{veg} gives a lower equilibrium depth, but the thermodynamic structure and fluxes depend only on this depth. The cloud-coupled solutions corresponding to Figure 16 (not shown) are just slightly steeper (compare Figures 3b and 4b). Figure 17 shows that the coupling between CO_2 and NEE does not depend on ecosystem, while the coupling between CO_2 and q_{m} has only a weak dependence. The larger NEE over grassland, and the shallower equilibrium depth, however, extends the curves to
much lower equilibrium values of CO₂. This is clearly a useful result, since generally the landscape will have mixed ecosystems. In this final figure we show the cloud-coupled solutions for CO₂ and NEE. These extend to lower CO₂ values because of the lower SW net and vertical mass exchanges over moist soils, and are more curved, because of the internal variation of SW net (compare Figure 7), but the dependence on ecosystem is very weak.

4. Discussion and Conclusions

[46] This simple equilibrium model gives insight into the coupling between the surface energy and water budgets and net ecosystem exchange, and the mixed layer equilibrium of potential temperature, water vapor, CO₂ (and other tracers such as radon). Mixed layer parameters, such as θm, q_m, CO₂m and Rnm as well as ML depth (our P_{LCL} in pressure coordinates), are relatively easy parameters to measure, so we expect that the solutions could be used to help constrain surface flux estimates averaged over the diurnal cycle. We have shown solutions as a function of a set of external parameters: soil water content, which directly impacts respiration and photosynthesis, and hence transpiration; the surface net shortwave, directly linked here to net radiation, which is also coupled to photosynthesis and transpiration; and the radiative cooling of the ML, which in the equilibrium model directly affects the surface sensible heat flux. We also show “cloud-coupled” solutions which link two of these, surface net shortwave and the radiative cooling of the ML, back to the net cloud mass flux in the equilibrium model, as a simple representation of the impact of cloud cover. Our other external model parameters are midtropospheric values of vapor mixing ratio, CO₂ and radon, the properties of air entrained into the CBL, and the lapse rate above cloud base, which we need because we have not included a coupled cloud-layer model. We have considered two idealized ecosystems, forest (based on observations in Wisconsin) and grassland (using parameter

![Figure 14](attachment:figure14.png)

Figure 14. As in Figure 6, showing dependence on ML radiative cooling rate. See color version of this figure in the HTML.

![Figure 15](attachment:figure15.png)

Figure 15. As in Figure 7b, showing dependence on ML radiative cooling rate. See color version of this figure in the HTML.

![Figure 16](attachment:figure16.png)

Figure 16. As in Figure 12 for forest and grassland. See color version of this figure in the HTML.
estimates from the literature) to show how the vegetation model affects the ML equilibrium.

[47] We vary external parameters in turn, keeping the others fixed with default values given in Table 2. A full range of SWC is always used, because this is a primary control on NEE in our simple vegetation model; on evaporation through stomatal resistance (R_{veg}), and hence on the surface energy balance. R_{veg} increases sharply, as SWC drops toward 0.137, the model “permanent wilting point,” and the equilibrium depth of the ML increases sharply, as reduced evaporation leads to a warmer drier equilibrium. Increasing SW_{net} increases the depth of the ML, but has only a small impact on R_{veg} because of a cancellation of effects in the vegetation model for the Wisconsin forest system. We then showed the change of the surface energy fluxes and evaporative fraction with SW_{net}, both as a function of SWC and ML depth as a pressure thickness, P_{LCL}, as these representations present two quite different perspectives of the equilibrium of the fully coupled system. As a function of SWC, we see the impact of surface processes on evaporation (and NEE). However, the ML equilibrium is controlled more by the energy balance of the ML as a whole (not just the surface) and the coupling to the cloud layer and the entire CBL. Indeed we have formulated the ML upper boundary conditions for θ and q in terms of ML depth and the ML radiative cooling is a primary control on ML depth, and the surface sensible heat flux. Consequently the surface energy fluxes become linear as functions of P_{LCL} and the sensible heat flux varies little with SW_{net}. A similar simplification occurs for the ML θ_{ml}, q_{ml} and CO_{2m}. As a function of SWC, these ML values are nonlinear and show the warming and drying of the ML as SWC decreases and SW_{net} increases. However, ML θ_{ml}, q_{ml} have a nearly linear dependence on P_{LCL}, and a rather weak dependence on surface solar forcing. CO_{2m} has a nonlinear dependence on P_{LCL}, but this too depends only weakly on solar forcing, at least for the forest ecosystem parameters we have used. Only ML radon, for which we specified a constant surface flux, decreases strongly with increased solar forcing, since the mass exchange at the top of the ML increases with SW_{net}, reducing the gradient to the free troposphere. The model uses two mass exchanges: one at cloud base, determined by the equilibrium of the ML, and the condition that its top be at the LCL of air at the base of the ML; and a second, an entrainment at CBL top, necessary to give q equilibrium in the face of subsidence of dry air into the CBL. Both these mass fluxes and their difference, which can be considered an additional mass flux into clouds, increase with SW_{net}. As the ML deepens, it reaches a depth (around 280 hPa thickness) where this cloud mass flux disappears, and the model with the constraint that ML top also be cloud base becomes invalid. One general and important conclusion is that unless SWC becomes so low that the ML becomes very deep, the assumptions of the model can be satisfied, with cloud base at the top of the ML and a shallow cloud field above in balance with weak large-scale subsidence. Betts [2000] reached a similar conclusion from a simpler model. The cloud-coupled solutions, while more nonlinear, appear to be a useful generalization to show the qualitative impact of the cloud field on the ML equilibrium.

[48] We then considered the impact of changing q_{ml}, the mixing ratio of air entering the CBL top. This has no impact on the thermodynamic structure and fluxes of the ML, but increasing q_{ml} increases the derived mass exchange with the free troposphere, and therefore reduces the inferred cloud mass flux. Essentially the ML stays the same, a smaller cloud mass flux compensates for moister air entrained at CBL top, but the CBL will also tend to deepen faster, unless there is compensating subsidence. This has a large impact on the CO_{2m} and R_{nm}, as these are passive tracers above the surface, and as the mass exchange with the free troposphere increases, they come closer to their values at CBL top. This changes the coupling between CO_{2m} and q_{ml}, and between CO_{2m} and NEE, which is almost unaffected by the changes in CO_{2m}. This means, not surprisingly, that if we are to relate the moisture structure and fluxes to the CO$_2$ structure and NEE, we need to know both the mixing ratio and CO$_2$ content of air entrained into the CBL.

[49] We summarized the effect of varying stability above the ML, but we did not show figures, because the lack of a model for the cloud layer is a weakness of the model. Increasing stability has a direct effect on the thermodynamic equilibrium, and the ML gets warmer and moister; while the mass exchange at cloud base and with the free troposphere decrease, which leads to a higher ML radon. However, CO_{2m} changes relatively little, because NEE is also reduced as respiration increases with temperature, and this has a slightly larger impact than the reduction in vertical mixing. The coupling between CO_{2m} and q_{ml} is greatly affected by increasing stability (because q_{ml} increases), but the link between CO_{2m} and NEE is shifted only slightly. Our main conclusion is that a better thermodynamic model for the CBL is needed to give further insight into the links between temperature and humidity, radiation and stability. In an earlier paper over the tropical ocean, Betts and Ridgway [1989] used a mixing line parameterization to represent the shallow cloud field and a coupled radiation code to compute the cloud layer equilibrium. However, they simplified the problem, by using a moist adiabat to represent the vertical temperature structure of the deep tropics and constrained the energy balance within the tropics. Further developments of our model in this area are needed.

Figure 17. As in Figure 7b for forest and grassland. See color version of this figure in the HTML.
In the absence of a coupled radiation code, we varied the radiative cooling of the ML, and also showed solutions where we coupled this radiative cooling to the net cloud mass flux. As a function of SWC, both EF and ML depth decrease as ML radiative cooling increases, and the mass exchanges at ML top and CBL top also decrease. As a function of ML depth, the ML equilibrium shifts to a slightly cooler drier state with higher CO$_2$$_m$, while radon, as expected, increases, whereas the mass vertical exchange decreases. The coupling between CO$_2$$_m$ and q$_m$ is almost unaffected, while that between CO$_2$$_m$ and NEE changes because respiration decreases as the ML cools. In fact the response of the ML equilibrium to reduced radiative cooling of the ML is qualitatively similar to the response to increased surface radiative forcing.

Our final sensitivity test shows the different equilibrium for two idealized ecosystems, forest and grassland. For our grassland, both photosynthesis and respiration are greater for the same SWC, SW$_{net}$, and surface temperature. As a function of SWC, EF increases for grassland and ML depth decreases, both a direct response to increased photosynthesis, and reduced R$_{veg}$, giving an ML that is cooler, moister, and has lower CO$_2$$_m$. However, as a function of ML depth, the picture is much simpler. The ML q_m, radon, all the mass fluxes, and energy fluxes are independent of ecosystem: the lower grassland R$_{veg}$ gives a lower equilibrium depth, but the thermodynamic structure and fluxes depend only on this depth. The result is that, while the coupling between CO$_2$ and q$_m$ depends on ecosystem, the coupling between CO$_2$ and NEE does not. This is clearly an important and useful result, because the ML integrates over the landscape, which will generally include multiple ecosystem types.

Our equilibrium model is an oversimplification. The vegetation model is based on fitting data from a Wisconsin forest tower, and the characteristics of other ecosystems need to be explored in terms of our equilibrium model, as they may behave differently. At the surface we have represented photosynthesis and respiration and the surface energy fluxes (across the surface superadiabatic layer) in terms of 24-hour mean quantities. One obvious extension would be to average over day and night separately. We have done this, but the solutions are not qualitatively different, and the model is more complex, requiring additional assumptions for the nighttime BL and day-night storage of energy, so we do not present these solutions. The 24-hour mean model captures the essence of the long-term averaged ML state, and will, we believe, be useful in interpreting the slow evolution of the CBL over land on timescales longer than a day. Indeed, other work shows that the BL climate states over land and the coupling of processes at the surface in a fully time dependent model (the European Centre reanalysis) can be mapped with remarkable precision by the daily mean state and daily flux averages [Betts, 2004].

ML variables are readily measurable, and are representative of large spatial scales, whereas the surface fluxes measured by eddy covariance techniques are representative of small spatial scales and especially difficult at night. Thus the ML variables may give estimates of the surface fluxes, averaged over large spatial scales, rather longer than the 24-hour mean advection distance (432 km at 5 m s$^{-1}$). At the same time they may give insight into optimum parameter sets for regional ecosystem models. The figures show that there is always a strong coupling between CO$_2$$_m$ and NEE, and between CO$_2$$_m$ and q$_m$, although there is dependence on the external boundary conditions of our model (some of which may also be measurable). In addition, ML radon is a sensitive measure of the mass exchange at cloud base. Consequently we think it likely that regional carbon budgets can be estimated or at least constrained using regional ML budgets, provided some upper air information of temperature, humidity, and CO$_2$ is available, and we are planning to do this in the future.

This equilibrium model includes the impact of the LCL as a constraint on ML depth, and our cloud-coupled solutions have included in a simple form the radiative impact of clouds; since the coupling with the cloud field is a fundamental part of the ML equilibrium for water vapor, CO$_2$, and the radiative field. Certainly there are processes that our simple model neglects. The most important perhaps is precipitation from deep clouds, which evaporates and cools the ML, and plays a role in its long-term thermodynamic equilibrium [see Betts, 2000]; and at the surface precipitation evaporates from a wet canopy (which is uncoupled to photosynthesis and is not included in our transpiration model). During precipitation events the vertical mixing of the troposphere is typically extensive, and is not represented by our nonprecipitating CBL model. However, the periods of suppressed convection between rain episodes are temporally dominant, and it is during these periods that we expect our model to provide useful information. In a companion paper [Helliker et al., 2004] we shall show that, during these episodes when subsidence dominates, the coupling between the moisture and CO$_2$ budgets is consistent with the model solutions in this paper and sufficient to provide a way of estimating NEE from evaporation, given the BL CO$_2$ and moisture structure. Furthermore, we extend this simple methodology by averaging through synoptic events to obtain estimates of NEE that agree with ground-based estimates over monthly timescales.

Appendix A: Relationship Between Relative Humidity (RH), Saturation Pressure, and Cloud Base

RH has fundamental significance in the atmosphere, because of its tight relationship to saturation pressure, and hence to lifting condensation level (LCL) and cloud base (the critical level of the liquid phase transition, which affects radiative and microphysical processes). Because this link is generally not fully appreciated, often RH is often thought as being of lesser significance than the “conserved” mixing ratio. However, saturation pressure is conserved in dry and wet adiabatic processes [Betts, 1982], so that the saturation pressure of a ML is of fundamental importance. The equilibrium ML model shows the link between the availability of water for evaporation and equilibrium cloud base, which is just the saturation pressure or LCL of ML air. Figure A1 shows the relation between RH (as a decimal) and the height of the h$_{LCL}$ (right-hand scale) as surface temperature varies, and (left-hand scale) the corresponding relationship with P$_{LCL}$/p = (p – p*)/p, the pressure height to the saturation level, p$, scaled by the pressure p. The dependence on temperature is weak. Formally, P$_{LCL}$ is
Figure A1. Relation between RH and the height of the lifting condensation level h_{LCL} (right-hand scale) as surface temperature varies, and the corresponding relationship with P_{LCL}/p (left-hand scale). See color version of this figure in the HTML.

directly related to $(1 - RH)$ by the approximate linear formula [Betts, 1997]

$$P_{LCL}/p = (1 - RH)/(A + (A - 1)RH), \quad (A1)$$

where $A = (0.622 \lambda/(2C_pT))$ decreases with increasing temperature from 2.83 at 0°C to 2.48 at 25°C; with λ the latent heat of vaporization and C_p the specific heat of air at constant pressure. Thus we may consider $(1 - RH)$ as a measure of the vertical displacement of air from its saturation pressure, either before it has entered cloud in the ML, or higher in the troposphere where it has exited a cloud and sunk to buoyancy equilibrium. It is useful to keep in mind some characteristic values. Over the ocean, as is well known, typical cloud base height of 500 m or $P_{LCL} \approx 50$ hPa, corresponds to RH $\approx 80\%$. Over Amazonia in the rainy season, afternoon cloud base may reach around 800 m, or $P_{LCL} \approx 80$ hPa with RH $\approx 70\%$. Over the boreal forest in spring, cloud base may reach around 2500 m, or $P_{LCL} \approx 200$ hPa with RH $\approx 30\%$; while over a desert, where water is largely unavailable for evaporation, cloud base may be 3500 m, $P_{LCL} \approx 300$ hPa with RH $\approx 20\%$ (or less). In our equilibrium model we see the range of solutions between $100 < P_{LCL} < 300$ hPa, as SPC varies. Equation (A1) can be inverted to give RH

$$RH = (1 - A P_{LCL}/p)/(1 + (A - 1)P_{LCL}/p). \quad (A2)$$

In our model solution for the ML equilibrium, we shall use the slightly better quadratic empirical fit to find RH$_{m}$ at the base of the ML

$$RH_m = 1 - (2A - 1.13)P_{LCL}/P_d + A(A - 0.83)(P_{LCL}/P_d)^2, \quad (A3)$$

where P_d is the surface pressure. Then we can find ML mixing ratio (in g kg$^{-1}$) from RH$_m$, using

$$q_m = RH_m q_s(T_m)/(1 + q_s(T_m)(1 - RH_m)/622). \quad (A4)$$

This simplifies the solution of the coupled system. Similar relationships to (A3) and (A4) are used to link $P_{LCL,cld}$, RH$_{cld}$ and q_{cld} for air just above the ML.

[56] Acknowledgments. Alan Betts acknowledges support from NSF under grant ATM-9988618 and from NASA under grant NASS-11578. J.B. and B.H. acknowledge support from NOAA grant GC00-280. This is CIW- DGE publication 44. We are grateful for discussions with Steve Wofsy and for suggestions from reviewers.

References

J. Berry and B. Helliker, Department of Global Ecology, Carnegie Institution of Washington, Stanford, CA 94305, USA.
A. K. Betts, Atmospheric Research, 58 Hendee Lane, Pittsford, VT 05763, USA. (akbetts@aol.com)