Coupling Climate to Clouds, Land-use, Precipitation and Snow

Alan K. Betts
akbetts@aol.com
http://alanbetts.com

Co-authors:
Ray Desjardins, Devon Worth, Darrel Cerkowniak
Agriculture and Agri-Food Canada
Shusen Wang and Junhua Li
Natural Resources Canada

University of Texas, Austin
April 8, 2014
Water in the Climate System

• Vapor, liquid and ice
 – Ocean and land

• Latent heat of phase changes
 – LH release drives clouds and storms
 – Precip, soil moisture, stomatal control
 \[EF = \frac{\lambda E}{(R_n - G)} \]

• Vapor IR absorption (WV greenhouse)
 – Clouds ‘black’ in IR

• SW reflectivity of clouds and snow
 – Effective cloud albedo, surface albedo
14 Prairie stations: 1953-2011

- **Hourly** p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- **Daily** precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)
Prairie Station Locations

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Station ID</th>
<th>Province</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Deer*</td>
<td>3025480</td>
<td>Alberta</td>
<td>52.18</td>
<td>-113.62</td>
<td>905</td>
</tr>
<tr>
<td>Calgary*</td>
<td>3031093</td>
<td>Alberta</td>
<td>51.11</td>
<td>-114.02</td>
<td>1084</td>
</tr>
<tr>
<td>Lethbridge†</td>
<td>3033880</td>
<td>Alberta</td>
<td>49.63</td>
<td>-112.80</td>
<td>929</td>
</tr>
<tr>
<td>Medicine Hat</td>
<td>3034480</td>
<td>Alberta</td>
<td>50.02</td>
<td>-110.72</td>
<td>717</td>
</tr>
<tr>
<td>Grande Prairie*</td>
<td>3072920</td>
<td>Alberta</td>
<td>55.18</td>
<td>-118.89</td>
<td>669</td>
</tr>
<tr>
<td>Regina*</td>
<td>4016560</td>
<td>Saskatchewan</td>
<td>50.43</td>
<td>-104.67</td>
<td>578</td>
</tr>
<tr>
<td>Moose Jaw</td>
<td>4015320</td>
<td>Saskatchewan</td>
<td>50.33</td>
<td>-105.55</td>
<td>577</td>
</tr>
<tr>
<td>Estevan*</td>
<td>4012400</td>
<td>Saskatchewan</td>
<td>49.22</td>
<td>-102.97</td>
<td>581</td>
</tr>
<tr>
<td>Swift Current†</td>
<td>4028040</td>
<td>Saskatchewan</td>
<td>50.3</td>
<td>-107.68</td>
<td>817</td>
</tr>
<tr>
<td>Prince Albert*</td>
<td>4056240</td>
<td>Saskatchewan</td>
<td>53.22</td>
<td>-105.67</td>
<td>428</td>
</tr>
<tr>
<td>Saskatoon*</td>
<td>4057120</td>
<td>Saskatchewan</td>
<td>52.17</td>
<td>-106.72</td>
<td>504</td>
</tr>
<tr>
<td>Portage-Southport</td>
<td>5012320</td>
<td>Manitoba</td>
<td>49.9</td>
<td>-98.27</td>
<td>270</td>
</tr>
<tr>
<td>Winnipeg*†</td>
<td>5023222</td>
<td>Manitoba</td>
<td>49.82</td>
<td>-97.23</td>
<td>239</td>
</tr>
<tr>
<td>The Pas*†</td>
<td>5052880</td>
<td>Manitoba</td>
<td>53.97</td>
<td>-101.1</td>
<td>270</td>
</tr>
</tbody>
</table>
Outline

Part 1: Review of published papers

• Clouds and Diurnal Cycle over seasons
 – Betts et al (2013a)

• Annual crops and seasonal diurnal cycle
 – Betts et al (2013b)

• Winter snow transitions and climate
 – Betts et al (2014a)

Part 2: Work in progress

• Betts et al. 2014b: Warm season coupling of temperature and humidity to precipitation and cloud cover

Papers at http://alanbetts.com
References

Methods: Analyze Coupled System

• **Seasonal diurnal climate by station/region**
• **220,000 days of excellent data (600 years)**
• **Composite by daily mean opaque cloud**
 – Calibrate SWCF, LWCF against radiation data
• **Change of seasonal climate with cropping**
 – ‘Summerfallow’ to annual crops on 5MHa in 30 yrs
• **Composite across snow transitions**
 – First snow in fall; spring melt of snowpack
 – Winter climate and % days snow cover
• **Link T, RH to precipitation and cloud cover on monthly and seasonal timescales**
Clouds and Diurnal Climate

- Reduce hourly data to
 - daily means: T_{mean}, RH_{mean} etc
 - data at T_{max} and T_{min}

- **Diurnal cycle climate**
 - $\text{DTR} = T_{\text{max}} - T_{\text{min}}$

 - $\Delta RH = RH_{tn} - RH_{tx}$

- Almost no missing hourly data (until recent government cutbacks!)
Compare Neighbors: 64 km

- Daily means
- T: $R^2 > 0.95$
- DTR: 1 to 1
- RH poorly correlated in winter
- Opaque Cloud 1 to 1
Calibration of Opaque Cloud to Effective Cloud Albedo (ECA)

- SW_{dn} data
 - Lethbridge, Swift Current, The Pas, Winnipeg
 - 82 station-years

- Tight relationship
 - OpaqueCloud to ECA
 - NDJF a little flatter
Clouds to Summer Diurnal Cycle

- 40-yr climate
- T and RH are inverse
- Q has double maximum for BL transitions
- θ_E flatter
- Overcast (rain) only outlier
Cloud Impacts

- **Summer**: Clouds reflect sunlight
 - no cloud, hot days; only slightly cooler at night
- **Winter**: Clouds are greenhouse
 - snow reflects low sun
 - clear & dry sky, cold days, very cold nights
- **Fast transition with snow in 5 days**

Betts et al. 2013
Annual Cycle: $T_{\text{max}}, T_{\text{min}}, \text{DTR}, \text{Precip}$

- **Warm state:** April – Oct
- **Cold state:** Dec – Feb
- **Transitions:** Nov, Mar
 \[T_{\text{max}} \approx 0 \, ^\circ\text{C} \]
- **Actually occur in <5 days**
Annual Cycle: RH and ΔRH

- **Warm state:** April – Oct
- **Cold state:** Dec – Feb
- **Transitions:** Nov, Mar
 $T_{\text{max}} \approx 0^\circ\text{C}$

- **Transition**
 - *in <5 days with snow*
Prairie Warm Season Climate

- 12 stations: *Uniform climatology*
- *Tiny variability* in DTR and ΔRH
RH is linked to LCL

- RH increases with cloud
- Cloud-base LCL decreases
- Afternoon LCL 550 - 2350m
Afternoon LCL is Cloud-base

- At T_{max}
- Lowest cloud-base (*ceilometer*)
- LCL (surface)
- Coupled CBL
Surface Radiation Budget

\[R_{\text{net}} = SW_{\text{net}} + LW_{\text{net}} \]
\[= (SW_{dn} - SW_{up}) + (LW_{dn} - LW_{up}) \]

Define Effective Cloud Albedo (reflection)

\[ECA = \frac{(SW_{dn}^{\text{clear)}- SW_{dn})}{SW_{dn}^{\text{clear)}}} \]

Clear sky

\[SW_{\text{net}} = (1 - \alpha_s)(1 - ECA) \cdot SW_{dn}^{\text{clear)}} \]

Reflected by surface, clouds

MODIS Calibrate Opaque Cloud data
Fit ECA and \(\text{LW}_{\text{net}} \) to Opaque Cloud

NDJF: \(\text{ECA} = 0.1056 + 0.0404 \text{ Cloud} + 0.00158 \text{ Cloud}^2 \)
SO-MA: \(\text{ECA} = 0.0588 + 0.0365 \text{ Cloud} + 0.00318 \text{ Cloud}^2 \)
MJJA: \(\text{ECA} = 0.0681 + 0.0293 \text{ Cloud} + 0.00428 \text{ Cloud}^2 \)

Gives \(\text{SW}_{\text{net}} \) from \(\text{SW}_{\text{dn}} \text{(clear)} \) and albedo \(\alpha_s \)

NDJF: \(\text{LW}_{\text{net}} = -63.0 + 3.14 \text{ Cloud} + 0.193 \text{ Cloud}^2 \)
SO-MA: \(\text{LW}_{\text{net}} = -91.5 + 4.43 \text{ Cloud} + 0.267 \text{ Cloud}^2 \)
MJJA: \(\text{LW}_{\text{net}} = -100.1 + 4.73 \text{ Cloud} + 0.317 \text{ Cloud}^2 \)
Diurnal Temperature Range

- Warms in daytime and cools at night
- Daytime Driver: R_{netD}
- Nighttime driver: LW_{net}

(Betts JGR 2006)
Impact of Snow on Climate

“Winter transitions”

- Composite about snow date
 - First lying snow in fall
 - Final snow-pack melt in spring
- Gives mean climate transition with snow
 - 13 stations with 40-50 years of data
- **Snow cover and winter climate**
- **Snow cover cools surface 10-14K**
 - Snow cover is a fast “climate switch”
 - Shift to ‘LW cloud forcing’ from ‘SW cloud forcing’
 - Shift to ‘Cold when clear’ from ‘Warm when clear’
14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, \((SW_{dn}, LW_{dn})\)
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)
N-S Albedo through Winter

- Prairies (SK)
 α_s: 0.2 to 0.73

- Boreal forest
 α_s: 0.1 to 0.35

- MODIS: 10day, 250m, avg. to 50x50km to latitude bands
 - CCRS product
Snowfall and Snowmelt
Winter and Spring transitions

- Temperature falls/rises about 10K with first snowfall/snowmelt
- **Snow reflects sunlight; reduces evaporation and water vapor greenhouse – loss of snow warms ‘local climate’**
 - Same feedbacks that are speeding Arctic ice melt in summer
 - **Local climate switch** between warm and cold seasons

Betts et al. 2014
Fall Snow Transition Climatology

- T_x, T_m, T_n fall about 10K
- Cloud peaks with snow; increases $\approx 10\%$
- Snow date: Nov 15 ± 3 days
Snow-melt Transition Climatology

- SW Alberta: T increase about 11K
- Saskatchewan: T increase about 10K
- 3 northern stations: increase 10K, slower
- Melt date: March 12–April 11
Snow Cover: Winter Climatology

- Alberta: 79% of variance
- Slopes
 - T_x = $-16.0 (\pm 0.6)$ K
 - T_m = $-14.7 (\pm 0.6)$ K
 - T_n = $-14.0 (\pm 0.7)$ K

10% fewer snow days

= $1.5K$ warmer
Coupling to Cloud Cover Across Snowfall

- **Mid-November**
- **5-day means (6000 days)**
 - *red: no snow*
 - *blue: snow*
- **With snow**
 - T_x, T_n plunge
- **Cloud coupling shifts in 5 days**
 - from ‘Warm when clear’
 - to ‘Cold when clear’
 - “SWCF to LWCF”
Clouds: Summer & Winter Climate

Opposite Impact

- **Summer:** Clouds reflect sunlight (soil absorbs sun)
 - no cloud, hot days; only slightly cooler at night
 - Convective boundary layer in daytime
- **Winter:** Clouds are greenhouse (snow reflects sun)
 - clear & dry sky, cold days and very cold nights
 - Stable boundary layer

Betts et al. 2013a
Role of LW_{dn} in Surface Radiation

- Snow reduces vapor flux
- Atmosphere cooler and drier
 - Less water vapor greenhouse
 - -22 W/m^2
- Offset by 10% cloud increase with snow
Surface Radiation Balance

• Across snow transition
 – Surface albedo α_s increases: 0.2 to 0.73
 – LW_{dn} decreases
 – Opaque cloud increases

• SW_{net} falls 34 W/m²
• LW_{dn} falls 15 W/m²
• Total 49 W/m²

• Surface skin T falls: $\Delta T = -11K$ to balance
 (Stefan-Boltzman law: $\Delta LW = \Delta(\sigma T^4) = 4\sigma T^3 \Delta T$)
Annual crops and seasonal diurnal cycle

• Ecodistrict crop data since 1955
 – Ecodistricts mapped to soils
 – Typical scale: 2000 km² (500-7000)

• Ecozones
 – boreal plains ecozone
 – semiarid/subumid prairie regional zones

• Shift from ‘Summerfallow’ (no crops) to annual cropping on 5 MHa (11 M acres)
 – Large increase in transpiration: Jun-Jul
13 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, \((SW_{dn}, LW_{dn})\)
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)
Change in Cropping

- Ecodistrict mean for 50-km around station
- Saskatchewan: 25% drop ‘SummerFallow’
- *Split at 1991- has summer climate changed?*
Three Station Mean in SK

- Growing season
 - T_{max} cooler; RH moister
 - DTR and ΔRH seasonal structure changes
Impact on Convective Instability

Growing season

- Lower LCL
- Higher θ_E
- More Precip
Contrast Boreal Forest

- No RH, DTR signal
Summary (Part 1)

• High quality dataset with Opaque cloud
• Understand cloud coupling to climate
• Transpiration from crops changes climate
 – Cools and moistens summer climate
 – Lowers cloud-base and increases θ_E
• Distinct warm and cold season states
 – Sharp transitions with snow cover: $\alpha_s = 0.7$
 – Snow cover is a “climate switch”
 • From ‘Warm when clear’, convective boundary layer
 • To ‘Cold when clear’, with stable boundary layer

Papers at http://alanbetts.com
Transformative Concepts

- Snow as climate switch

- **Opaque/reflective cloud**
 - SWCF, LWCF $\rightarrow R_n$

- Diurnal climate analysis of T, RH
 - Dominated by cloud/R_n
 - **BUT**: Radiation only analysis
 - Because no soil moisture \rightarrow EF
Monthly, Seasonal, 50-yr Climate

• **Opaque/reflective cloud** → R_n

• **Precipitation** linked to
 – Evaporation, soil moisture, EF

• **Separate land-surface coupling?**
 – YES, 50-yr climate coupling is
 – RH to precipitation and soil moisture
 – T to opaque cloud and R_n

• *Monthly timescale blended*
11 stations: 53-yr JJA climate

- Precip to \((R^2)\)
 - Cloud \((0.56)\)
 - \(P_{\text{LCLtx}}\) \((0.83)\)
 - \(RH_{\text{tx}}\) \((0.71)\)

- Cloud to
 - \(T_x\) \((0.69)\)

- Separation

- Month: blend

- Daily: cloud
Diurnal cycle tightly coupled

- ΔRH to DTR
- 2.77 %/K
 ($R^2 = 0.90$)
Monthly timescale: Regression

\[\delta \text{DTR} = K + A \cdot \delta \text{Precip(Mo-2)} + B \cdot \delta \text{Precip(Mo-1)} + C \cdot \delta \text{Precip} + D \cdot \delta \text{OpaqueCloud} \]

<table>
<thead>
<tr>
<th>Month</th>
<th>K</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>(R^2) All</th>
<th>(R^2) Precip</th>
<th>(R^2) Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0±0.83</td>
<td>-0.35±0.05</td>
<td>-0.37±0.04</td>
<td>-1.10±0.05</td>
<td>0.69</td>
<td>0.39</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>0±0.70</td>
<td>-0.30±0.03</td>
<td>-0.32±0.02</td>
<td>-0.97±0.04</td>
<td>0.69</td>
<td>0.42</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>0±0.73</td>
<td>-0.20±0.03</td>
<td>-0.25±0.02</td>
<td>-0.32±0.03</td>
<td>-1.10±0.05</td>
<td>0.67</td>
<td>0.42</td>
<td>0.48</td>
</tr>
<tr>
<td>Aug</td>
<td>0±0.74</td>
<td>-0.07±0.02</td>
<td>-0.21±0.03</td>
<td>-0.40±0.03</td>
<td>-1.24±0.04</td>
<td>0.79</td>
<td>0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>Sept</td>
<td>0±0.77</td>
<td>-0.22±0.03</td>
<td>-0.49±0.04</td>
<td>-1.27±0.04</td>
<td>0.82</td>
<td>0.43</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>0±0.78</td>
<td>-0.27±0.03</td>
<td>-0.70±0.07</td>
<td>-1.33±0.04</td>
<td>0.78</td>
<td>0.37</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>
Monthly timescale: Regression

\[\delta \text{RH}_{tx} = K + A^* \delta \text{Precip(Mo-2)} + B^* \delta \text{Precip(Mo-1)} + C^* \delta \text{Precip} + D^* \delta \text{OpaqueCloud} \]

<table>
<thead>
<tr>
<th>Month</th>
<th>(K)</th>
<th>A (Mo-2)</th>
<th>B (Mo-1)</th>
<th>C (Mo)</th>
<th>D</th>
<th>(R^2) All</th>
<th>(R^2) Precip</th>
<th>(R^2) Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0.0±3.6</td>
<td>1.13±0.38</td>
<td>1.41±0.23</td>
<td>2.01±0.17</td>
<td>4.67±0.20</td>
<td>0.70</td>
<td>0.43</td>
<td>0.61</td>
</tr>
<tr>
<td>Jun</td>
<td>0.0±3.6</td>
<td>0.69±0.23</td>
<td>1.26±0.15</td>
<td>1.96±0.12</td>
<td>4.36±0.22</td>
<td>0.68</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>July</td>
<td>0.0±4.1</td>
<td>0.84±0.18</td>
<td>1.72±0.12</td>
<td>1.80±0.17</td>
<td>4.42±0.30</td>
<td>0.59</td>
<td>0.43</td>
<td>0.33</td>
</tr>
<tr>
<td>Aug</td>
<td>0.0±3.6</td>
<td>0.66±0.11</td>
<td>1.23±0.13</td>
<td>2.42±0.16</td>
<td>4.08±0.20</td>
<td>0.73</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td>Sept</td>
<td>0.0±3.5</td>
<td>1.40±0.13</td>
<td>2.10±0.18</td>
<td>4.35±0.16</td>
<td>0.75</td>
<td>0.45</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>0±4.3</td>
<td>1.30±0.19</td>
<td>5.06±0.38</td>
<td>4.61±0.22</td>
<td>0.67</td>
<td>0.44</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>
Monthly anomalies (MJJA: 2346 months)

- Less cloudy and less rain (this month and last)
 - δT_x warmer (cloud mostly) \((R^2 = 0.55) \)
 - δDTR larger (both) \((R^2 = 0.72) \)
 - δRH drier (both) \((R^2 = 0.68) \)
How good is the regression fit?

- **September**
 - $T_x \pm 1.4^\circ C$
 - DTR $\pm 0.8^\circ C$
 - $RH_{tx} \pm 3.5\%$
 - $P_{LCLtx} \pm 13$ hPa

- Some extremes underestimated

(586 station-yrs)
MJJA Mean: Regression Fit

Growing Season Means

\[\delta \text{Precip(AMJJA)} = 0.25 \delta \text{Precip(April)} + \delta \text{Precip(MJJA)} \]
Diurnal coupling: MJJA mean

- Internal coupling well-defined
 - Slopes ≈ 60% of 50-yr climate
MJJA Surface Water Balance

\[E = P - R - \Delta SM \]

\[(R/P \approx 0.05: (P-R) = 0.95P) \]

\[RH_x \text{ depends on } \delta \text{Precip(AMJJA)} \]

\[P = P_m + \delta \text{Precip(AMJJA)} \]

\[\Delta SM = \Delta SM_m + F*\delta \text{Precip(AMJJA)} \]

where \(P_m = 1.92 \text{ mm/day} \)

\[\Delta SM_m = -0.61 \text{ mm/day (75mm/122 days)} \]

(Just an estimate)

But \(F \) is unknown

– change of \(\Delta SM \) with precipitation anomalies
– damps impact of precipitation anomalies
Energy and Water “Budget”

- **Start with cloud and precip. anomalies**
 - Gives anomalies of T, RH
 - Gives R_n anomalies

- **Close with assumptions**
 - Climate coupling of cloud to precip. (0.73)
 - $F = 0.6$: soil water extraction heavily damped by precip. anomalies
Summary (Part 2)

• **High quality dataset with Opaque cloud**
 – Estimate SWCF, LWCF and R_n

• **Map coupling of T, RH climate anomalies**
 – To cloud on daily time-scale
 – To cloud and precip. on monthly/seasonal

• **Dependence splits for 50-yr climate**
 – T depends on cloud/radiation
 – RH and DTR depend on precip.

• **Estimate evaporation anomalies**
 – Feedback to daily timescale

Papers at http://alanbetts.com
Summer Diurnal Cycle Climate

- Climate emerges from daily variability
- Cloud increases, precipitation increases
- T_{max}, DTR increase, T_{min} flat
- RH_{mean} increases, ΔRH decreases
Diurnal Climate Change

- Annual cycle in Saskatchewan
- DTR change
- RH_mean up
- Cloud peak
6 Stations in Saskatchewan

- T_x, T_m, T_n fall about 10K
- ΔRH falls to <10%, afternoon RH rises
- Cloud increases 10% (peaking with snow)
- Snow date: Nov 15 ± 15 days
Snow Cover: Fall and Spring Climatology

- Fraction of days with snow cover drives much of interannual T variability
- More in spring than fall
- T- Slopes: -11, -8, -11, -11
Daily Mean Climate vs Long-term Diurnal Mean

- **Definitions**
 - \(\text{DTR} = T_x - T_n \)
 - \(\Delta \text{RH} = RH: T_x - RH: T_n \)

Monthly mean diurnal cycle

- \(\text{DTR}_h = T_{xh} - T_{nh} \)
- \(\Delta \text{RH}_h = RH_{xh} - RH_{nh} \)

Radiatively forced signal small in winter compared to daily advection
Daily Mean Climate vs Monthly Diurnal Mean Climate

- Daily variability in winter large
- Monthly variability small: DTR_h quasi-linear
\[T_{bias} = \frac{(T_{\text{max}} + T_{\text{min}})}{2} - T_{\text{mean}} \]

- Opposite in warm and cold season