Coupling of Diurnal Climate to Clouds, Land-use and Snow

Alan K. Betts
akbetts@aol.com
http://alanbetts.com

Co-authors:
Ray Desjardins, Devon Worth, Darrel Cerkowniak
Agriculture and Agri-Food Canada
Shusen Wang and Junhua Li
Natural Resources Canada

UW Madison
November 11, 2013
1969: Barbados to Venezuela

BOMEX to VIMHEX
PhD student, London,
“Cumulus Convection”
Vermont Winter 2006

- Snow reflects sunlight, except where trees shadow
- Cold; little evaporation, clear sky; earth cools to space
- **2012 warm winter, snow melts** → **positive feedback**
- “Understanding Climate Change” “Advise Vermont”
14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, **Opaque Cloud** by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS: 250m, after 2000)
Prairie Station Locations

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Station ID</th>
<th>Province</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Deer*</td>
<td>3025480</td>
<td>Alberta</td>
<td>52.18</td>
<td>-113.62</td>
<td>905</td>
</tr>
<tr>
<td>Calgary*</td>
<td>3031093</td>
<td>Alberta</td>
<td>51.11</td>
<td>-114.02</td>
<td>1084</td>
</tr>
<tr>
<td>Lethbridge†</td>
<td>3033880</td>
<td>Alberta</td>
<td>49.63</td>
<td>-112.80</td>
<td>929</td>
</tr>
<tr>
<td>Medicine Hat</td>
<td>3034480</td>
<td>Alberta</td>
<td>50.02</td>
<td>-110.72</td>
<td>717</td>
</tr>
<tr>
<td>Grande Prairie*</td>
<td>3072920</td>
<td>Alberta</td>
<td>55.18</td>
<td>-118.89</td>
<td>669</td>
</tr>
<tr>
<td>Regina*</td>
<td>4016560</td>
<td>Saskatchewan</td>
<td>50.43</td>
<td>-104.67</td>
<td>578</td>
</tr>
<tr>
<td>Moose Jaw</td>
<td>4015320</td>
<td>Saskatchewan</td>
<td>50.33</td>
<td>-105.55</td>
<td>577</td>
</tr>
<tr>
<td>Estevan*</td>
<td>4012400</td>
<td>Saskatchewan</td>
<td>49.22</td>
<td>-102.97</td>
<td>581</td>
</tr>
<tr>
<td>Swift Current†</td>
<td>4028040</td>
<td>Saskatchewan</td>
<td>50.3</td>
<td>-107.68</td>
<td>817</td>
</tr>
<tr>
<td>Prince Albert*</td>
<td>4056240</td>
<td>Saskatchewan</td>
<td>53.22</td>
<td>-105.67</td>
<td>428</td>
</tr>
<tr>
<td>Saskatoon*</td>
<td>4057120</td>
<td>Saskatchewan</td>
<td>52.17</td>
<td>-106.72</td>
<td>504</td>
</tr>
<tr>
<td>Portage-Southport</td>
<td>5012320</td>
<td>Manitoba</td>
<td>49.9</td>
<td>-98.27</td>
<td>270</td>
</tr>
<tr>
<td>Winnipeg*†</td>
<td>5023222</td>
<td>Manitoba</td>
<td>49.82</td>
<td>-97.23</td>
<td>239</td>
</tr>
<tr>
<td>The Pas*†</td>
<td>5052880</td>
<td>Manitoba</td>
<td>53.97</td>
<td>-101.1</td>
<td>270</td>
</tr>
</tbody>
</table>
Outline

• **Clouds** and Diurnal Cycle over seasons
 – Betts et al (2013a)

• **Annual crops** and seasonal diurnal cycle
 – Betts et al (2013b)

• **Winter snow transitions** and climate
 – Betts et al (2014)
References

• Betts, A.K., R. Desjardins, D. Worth, Shusen Wang and Junhua Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies (JGR 2013JD021168 submitted)
Methods: Analyze Coupled System

- **Seasonal diurnal climate by station/region**
- **220,000 days of excellent data (600+ years)**
- Composite by **daily mean opaque cloud**
 - Calibrate SWCF, LWCF against radiation data
 - Sub-stratify by RH
- Change of seasonal climate with **cropping**
 - Summerfallow to annual crops on 5MHa in 30 yrs
 - Comparison with ERA-Interim grid-box
 - Drydown after precipitation events
- Composite across **snow transitions**
 - First snow in fall; spring melt of snowpack
 - Winter climate and % snow cover
Clouds and Diurnal Climate

• Reduce hourly data to daily mean, \(T_{\text{mean}} \) + data at \(T_{\text{max}} \) and \(T_{\text{min}} \)

• **Definitions: Diurnal cycle climate**
 - \(\text{DTR} = T_{\text{max}} - T_{\text{min}} = (T_x - T_n) \)
 - \(\Delta \text{RH} = \text{RH}:T_x - \text{RH}:T_n \)

• Almost no missing data (*until government cutbacks!*), reject a day if <23h data
Compare Neighbors: 64 km

- Daily means
- T: $R^2 > 0.95$
- DTR: 1 to 1
- RH poorly correlated in winter
- Opaque Cloud 1 to 1
Clouds to Summer Diurnal Cycle

- **40-yr climate**
- **T and RH are inverse**
- **Q has double maximum for BL transitions**
- **θ_E flatter**
- **Overcast only outlier**
Diurnal Cycle of Cloud Cover

- Noon peak for >6/10s
- Afternoon broken Cu for <6/10
Clouds: Summer & Winter Climate

Opposite Impact

• **Summer:** Clouds reflect sunlight (soil absorbs sun)
 – no cloud, hot days; barely cooler at night - *SWCF*

• **Winter:** Clouds are greenhouse (snow reflects sun)
 – clear & dry sky, cold days and very cold nights - *LWCF*

Betts et al. 2013
Summer Diurnal Cycle Climate

- Climate emerges from daily variability
- Cloud increases, precipitation increases
- T_{max}, DTR increase, T_{min} flat
- RH_{mean} increases, ΔRH decreases
RH is linked to LCL

- RH increases with cloud
- Cloud-base LCL decreases
- Afternoon LCL 550 - 2350m
Afternoon LCL is Cloud-base

- At T_{max}
- Lowest cloud-base (*ceilometer*)
- LCL (surface)
- **Coupled CBL**
Annual Cycle: $T_{\text{max}}, T_{\text{min}}, \text{DTR, Precip}$

- **Warm state:** April – Oct
- **Cold state:** Dec – Feb
- **Transitions:** Nov, Mar
 $T_{\text{max}} \approx 0^\circ\text{C}$

- **Actually occur in** <5 days
Annual Cycle: RH and ΔRH

- **Warm state:** April – Oct
- **Cold state:** Dec – Feb
- **Transitions:** Nov, Mar $T_{\text{max}} \approx 0^\circ$C
 - Transition – *in <5 days with snow*
Prairie Warm Season Climate

- 12 stations: small variability
- Variability in DTR and ΔRH tiny
- Structure same as Regina
Surface Radiation Budget

- \(R_{\text{net}} = SW_{\text{net}} + LW_{\text{net}} \)
 \[= (SW_{\text{dn}} - SW_{\text{up}}) + (LW_{\text{dn}} - LW_{\text{up}}) \]

- \(SWCF = SW_{\text{dn}} - SW_{\text{dn}}(\text{clear}) \)

 Fit clear days or calculate

Define Effective Cloud Albedo

- \(ECA = - \frac{SWCF}{SW_{\text{dn}}(\text{clear})} \)

- \(SW_{\text{net}} = (1 - \alpha_s)(1 - ECA) \cdot SW_{\text{dn}}(\text{clear}) \)

 Reflected by surface, clouds

MODIS Calibrate Opaque Cloud data
Calibration of Opaque Cloud to ECA-Effective Cloud Albedo

- Tight relationship: ECA to Opaque Cloud
- NDJF a little flatter
Fit ECA and LW$_{\text{net}}$ to Opaque Cloud

NDJF: \(\text{ECA} = 0.1056 + 0.0404 \text{ Cloud} + 0.00158 \text{ Cloud}^2 \)
SO-MA: \(\text{ECA} = 0.0588 + 0.0365 \text{ Cloud} + 0.00318 \text{ Cloud}^2 \)
MJJA: \(\text{ECA} = 0.0681 + 0.0293 \text{ Cloud} + 0.00428 \text{ Cloud}^2 \)

Gives \(SW_{\text{net}} \) from \(SW_{\text{dn(clear)}} \) and albedo \(\alpha_s \)

NDJF: \(\text{LW}_{\text{net}} = -63.0 + 3.14 \text{ Cloud} + 0.193 \text{ Cloud}^2 \)
SO-MA: \(\text{LW}_{\text{net}} = -91.5 + 4.43 \text{ Cloud} + 0.267 \text{ Cloud}^2 \)
MJJA: \(\text{LW}_{\text{net}} = -100.1 + 4.73 \text{ Cloud} + 0.317 \text{ Cloud}^2 \)
Diurnal Temperature Range

- **Daytime Driver:** \(R_{\text{netD}} \)
- **Nighttime driver:** \(LW_{\text{net}} \)
- *Fully coupled diurnal system in warm season*
Annual crops and seasonal diurnal cycle

• Ecodistrict crop data since 1955
 – Ecodistricts mapped to soils
 – Typical scale: 2000 km² (500-7000)

• Ecozones
 – boreal plains ecozone
 – semiarid/subhumid prairie regional zones

• Shift from ‘Summerfallow’ (no crops) to annual cropping on 5 MHa (11 M acres)
 – Large increase in transpiration: Jun-Jul
14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, **Opaque Cloud by level**, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS: 250m, after 2000)
Change in Cropping

- Ecodistrict mean for 50-km around station
- Saskatchewan: 25% drop SummerFallow
- **Split at 1991- has summer climate changed?**
Diurnal Climate Change

- Annual cycle in Saskatchewan
- DTR change
- RH_{mean} up
- Cloud peak
Three Station Mean in SK

- Growing season
 - T_{max} cooler; RH moister
 - DTR and ΔRH seasonal structure changes
Impact on Convective Instability

Growing season

- Lower LCL
- Higher θ_E
- More Precip
Contrast Boreal Forest

- No RH, DTR signal
Impact of Snow on Climate

“Winter transitions”

• Composite about snow date
 – First lying snow in fall
 – Final snow-pack melt in spring

• Gives mean climate transition with snow
 – 13 stations with 40-50 years of data

• Snow cover and winter climate

• Snow cover cools surface 10-14K
 – Shift to LWCF control from SWCF
 – Snow cover is a fast “climate switch”
October 2011– March 2012

• Warmest 6 months on record
• My garden frozen only 67 days
• No permanent snow cover west of Green Mtns
• Contrast snowy winter 2010-11
Snowfall and Snowmelt
Winter and Spring transitions

- Temperature falls 9K with first snowfall
- Rise with snowmelt is similar
- Snow reflects sunlight; reduces evaporation and water vapor greenhouse – loss of snow warms ‘local climate’
 - Same feedbacks that are speeding Arctic ice melt in summer

Betts et al. 2014
6 Stations in Saskatchewan

- \(T_x, T_m, T_n \) fall about 10K
- \(\Delta RH \) falls to <10%, afternoon RH rises
- Cloud increases 10% (peaking with snow)
- Snow date: Nov 15 ± 15 days
Fall Snow Transition Climatology

- T_x, T_m, T_n fall about 10K
- ΔRH falls to 10%, afternoon RH rises
- Cloud increases 10% (peaking with snow)
- Snow date: Nov 15 ± 3 days
Snow-melt Transition Climatology

- SW Alberta: T_x, T_m, T_n increase about 11K
- Saskatchewan: increase about 10K
- 3 northern stations: increase 10K, slower
- Melt date: March 12–April 11
Snow Cover: Fall and Spring Climatology

- Fraction of days with snow cover drives much of interannual T variability
- More in spring than fall
- T- Slopes: -11, -8, -11, -11
Snow Cover: Cold Season Climate

- **Alberta:** 79% of variance

- **Slopes**
 - T_x -16.0K
 - T_m -14.7K
 - T_n -14.0K
Coupling to Cloud Cover Across Snowfall

- Mid-November
- 5-day means
 - red: no snow
 - blue: snow
- With snow T_x, T_n plunge
- Cloud coupling shifts: SWCF to LWCF
Clouds: Summer & Winter Climate

Opposite Impact

- **Summer:** Clouds reflect sunlight (soil absorbs sun)
 - no cloud, hot days; only slightly cooler at night
- **Winter:** Clouds are greenhouse (snow reflects sun)
 - clear & dry sky, cold days and very cold nights

Betts et al. 2013
N-S Albedo through Winter

- **Prairies**
 - α_s: 0.2 to 0.73

- **Boreal forest**
 - α_s: 0.1 to 0.35

- **MODIS**: 10day, 250m, avg. to 50x50km to latitude bands
Role of LW_{dn} in Surface Radiation

- Snow reduces vapor flux
- Atmosphere cooler and drier
 - Less water vapor greenhouse
 - -22 W/m2
- Offset by 10% cloud increase with snow
Surface Radiation Balance

- Across snow transition
 - surface albedo α_s increases
 - LW_{dn} decreases
 - Opaque cloud increases

- SW_{net} falls 34 W/m2
- LW_{dn} falls 15 W/m2
- Total 49 W/m2

- Surface skin T falls: -11K to balance
Summary

• High quality dataset with Opaque cloud
• Understand cloud coupling to climate
• Transpiration from crops changes climate
 – Cools and moistens summer
 – Lowers cloud-base and increases θ_E
 – Feedback increases precipitation
• Distinct warm and cold season states
 – Sharp transitions with snow cover: $\alpha_s = 0.7$
 – From SWCF dominated, with coupled CBL
 – To LWCF dominated, with stable BL
 – Snow cover is a “climate switch”

Papers at http://alanbetts.com
Outline Revisited

- **Clouds** and Diurnal Cycle over seasons
 - *Betts et al (2013a)*
- **Annual crops** and seasonal diurnal cycle
 - *Betts et al (2013b)*
- **Winter snow transitions** and climate
 - *Betts et al (2014)*

Papers at http://alanbetts.com
Daily Mean Climate vs Long-term Diurnal Mean

• **Definitions**

 • $DTR = T_x - T_n$
 • $\Delta RH = RH_x - RH_n$

Monthly mean diurnal cycle

• $DTR_h = T_{xh} - T_{nh}$
• $\Delta RH_h = RH_{xh} - RH_{nh}$

Radiatively forced signal small in winter compared to daily advection
Daily Mean Climate vs Monthly Diurnal Mean Climate

- Daily variability in winter large
- Monthly variability small: DTR_h quasi-linear
\[T_{\text{bias}} = \left(T_{\text{max}} + T_{\text{min}} \right)/2 - T_{\text{mean}} \]

- Opposite in warm and cold season