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ABSTRACT

A revised version of Raymond's wave-CISK model is used to study the propagation of mesoscalp modes.
The sensitivity of unstable modes to variations in basic state stability and wind shear {characteristics of tpe
castern Atlantic during GATE), as well as parameterized cumulus heating, is examined. Unstable' modes exist
for mesoscale wavelengths, which are sensitive to the details of the cumulus heating parameters as well as the
structure of the large-scale wind shear. In many cases, the most unstable mode has a two-dimensional structure.

1. Imtroduction

Previous attempts to model mesoscale motion fall
into two main categories: modeling of the cumulo-
nimbus scale with horizontal dimensions up to 30 km

and modeling of a larger scale with dimensions up to -

160 km. The essential difference between these two
areas is the inclusion, through parameterization
schemes, of different physical processes. The models
of the cumulonimbus scale are nonhydrostatic and
close the system of governing equations by parame-
terizing microphysical and sometimes turbulent pro-
cesses. The results are extrapolated to explain features
of convective lines on the mesoscale, such as the role
of organized mesoscale updrafts and downdrafts. In
this type of model we may include those by Moncrieff
and Miller (1976), Klemp and Wilhelmson (1978a,b)
and Cotton and Tripoli (1978). A common denomi-
nator among these models is the fact that they lead to
the conclusion that the environmental wind shear is
extremely important in determining the properties of
small-scale systems, particularly their propagation.
Models of the larger mesoscale are usually hydro-
static and some use sophisticated parameterization
schemes t0 represent cumulus-scale moist processes.
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Typical parameters and processes include cloud base,
cloud top, updraft and downdraft thermodynamics,
entrainment and detrainment effects, precipitation,
condensation and evaporation. The Kreitzberg and
Perkey (1976, 1977) and Fritsch (1978) models take
into account cloud lifetimes as opposed to Brown’s
(1979) model that makes the quasi-equilibrium as-
sumption (Arakawa and Schubert, 1974). Brown’s
model shows results that bear strong resemblance to
observed mesoscale systems; however, because of the
relatively complicated physical parameterizations,
these models do not illuminate well the fundamental
dynamical processes.

Some simpler models have been proposed. Ray-
mond (1975, 1976), presents a linear model using a
parameterization scheme based on low-level conver-
gence, following the wave-CISK concept (Lindzen,
1974), to study the dynamic structure on the mesoscale
at early stages of development. Fernandez and Thorpe
(1979) have recently made a comparison between the
steady state models of Moncrieff and Green (1972)
and Moncrieff and Miller (1976) and the wave-CISK
model of Raymond (1975, 1976). They conclude that
Raymond’s model gives poor results when cloud bases
are very low, indicating that the mass flux due to the
plumes should be treated in a more realistic way. They
also conclude that the ability of storms to propagate
relative to the environmental flow can be reproduced
in the linear wave-CISK model and thus may not be
a fundamentally nonlinear effect.
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This paper presents an extension of Raymond’s
(1975, 1976) wave-CISK model using the heating pa-
rameterization of Stevens and Lindzen (1978). The
sensitivity of the unstable modes to the parameteriza-
tion schemes and to environmental conditions such
as wind shear are presented. Unstable modes are found
to exist for mesoscale wavelengths (~20 km), but there
is considerable sensitivity to cumulus heating param-
eters and the structure of the large-scale flows. As there
is not general concensus on the existence or uniqueness
of a cumulus parameterization scheme for meso- and
larger scales, the sensitivity to parameters is distressing.

The finding of greatest instability at an intermediate
scale is a new result which depends on the wind shear
in a wave-CISK model. Essentially two-dimensional
instabilities, with one horizontal scale much larger than
the other, are encouragingly reminiscent of squall line
activity in the tropics. A weakness of this and other
wave-CISK studies is the lack of a clear separation of
scales between cumulus and mesoscale. Nevertheless,
the intermediate scale selection suggests progress be-
yond conditional instability of the first kind (i.e., at
infinitesimal scale in a model without dissipation).

2. Governing equations

The governing equations are the conservation of
momentum, thermodynamic energy and mass:

. 1 .
g+v-Vv+kav+—Vp+gk=O, (1)
p
a0
5—+V Vo =Q, (2)
dp
_+V. =
2+ V(o) 3)

The symbols have the usual meanings; k is the vertical
unit vector.

Several assumptions are made concerning the above
set of equations:

(i) Separation of scales is assumed between the hor-
izontally averaged basic state or large-scale (subscript
zero) and deviations from it (primed variables) which
contain mesoscale and small-scale contributions. The
basic state variables are required to satisfy (1)-(3), as
does the sum of the basic state and deviation quantities
represented by the nonsubscripted, nonprimed vari-
ables. Subtraction of the former set of equations from
the latter provides a set of equations for the primed
variables.

(ii) The model is formulated for a nonrotating plane
(f = 0). The neglect of the earth’s rotation in a me-
soscale model may be considered a valid first approx-
imation, especially in the tropical regions where the
Iocal Coriolis parameter is much smaller than the
Doppler-shifted frequency and therefore the Rossby
number exceeds unity.
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(iii) The anelastic form of the continuity equation
is assumed. The linearized version of Poisson’s equa-
tion is used to eliminate the dependence on pertur-
bation density. To be consistent with the anelastic as-
sumption, we neglect in the vertical component of the
momentum equation a term

p_’ dlnﬂo
po dz

(Charney and Eliassen, 1964). Scale analysis shows
that this term is one order of magnitude smaller
than g6'/6,.

The above assumptions lead to the system of per-
turbation equations

’ 0’ R
S"-‘Ll+vo-Vv’+‘v’«Vv0+V‘D———gk= v, (4)
at po B
30’ ,
5—-+vo V' +v-Vb, =0 + ¢, (5
V- (po¥) = 0, (6)
where
= (v-w +Z Vp') .~ =Y. ()
Po

A further step is taken now to separate the primed
variables into mesoscale and small-scale contributions.
Mathematically, this separation of scales requires a
simple averaging technique. Physically, however, there
is no certainty that this is possible or even reasonable
since very little is known about scale interaction from
the observational point of view. A justification for the
widespread use of this technique is that different phys-
ical mechanisms govern the motions in each scale: for
example, microscale turbulence may play a minor role
in long atmospheric waves and mesoscale motions,
but significantly affects cumulus-scale phenomena. On
the assumption that the two mentioned scales may be
separated, a running average is defined

(V(x, ¥, 2, D)

1 fx+Ax/2 J‘y+Ay/2
=— ¥(x', V', z, Ddx'dy’, (8
Axdy Jess ya ', ¥', 2z, ndx'dy’, (8)

so that the perturbation fields may be written as
V=) +V, 9)

where the double prime refers to the residual after the
running average is performed and corresponds to the
small-scale contribution. The angular brackets corre-
spond to the mesoscale contribution. We shall use Ax,
Ay ~ 10 km which should be adequate to resolve
mesoscale motions.

The system of equations (4)—(7) undergo the fol-
lowing transformations:
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(i) The running average is performed;
(ii) the system is linearized through neglect of cor-

relations between mesoscale variables. Small-scale

transports are retained.

With the choice of a horizontally homogeneous basic
state, we now decompose mesoscale variables into their
Fourier components [assuming for the moment a sin-
gle-valued complex frequency w(k)]:

Vi, p, 2, 0) = f f V(k, z) exp[i(k - ¥ — wi))dk.dk,,

(10)

where
k=ki+kj, r=xi+)). (11)

The above assumptions reduce the problem to solv-
ing the following equations

_l(a)_k'vO)ﬁ+—W+l—ﬁ= X (12)
Po
—i(w—k-vo)f;+@9‘&+i£y13=‘y, (13)
. dz Po
—i(w—k-vO)W+—‘1-£—g£=‘7/z, (14)
dz po o
o 6o . ” - '
—i(w — K- Vo) + o Ww=0+ ¥, (15)
dz
k-v+ ii(m@ =0. (16)
' po dz

The problem is then to 1) define a basic state, 2)
choose parameterization schemes that will account for
the right-hand side of Egs. (12)-(15), 3) impose bound-
ary conditions and 4) solve the resulting linear, ho-
mogeneous system as an eigenvalue problem. For each
- vector wavenumber k there is a set of complex fre-
quencies w = w, + iw; that satisfy Egs. (12)-(16). From
_ Eq. (10) it may be seen that positive w, corresponds

to propagation in the direction of the wavenumber
- vector k and negative w, to propagation in the opposite
direction. Positive w; corresponds to exponential growth

of the particular mode under consideration and neg-'

ative w; corresponds to exponential decay.

To solve Egs. (12)-(16), a vertical differencing
scheme has to be devised since vertical derivatives are
not analytical and large-scale fields depend on height.
Following the scheme proposed by Arakawa and Lamb
(1977), the atmosphere has been divided into V layers
separated by N — 1 levels of constant z. The layers
carry the horizontal components of velocity # and
D, potential temperature ¢ and pressure p. The levels
carry the vertical velocity w. Fig. 1 shows the vertical
structure of the model.
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FI1G. 1. Model vertical structure showing distribution of variables.
Solid lines indicate the levels dividing the layers; dashed lines indicate
layers within which the indicated variables are carried.

The boundary condition at the (flat) surface is that
the vertical velocity vanishes. At the top of the model,
the radiation condition is applied following the pro-
cedure used by Eliassen and Palm (1960): it consists
of imposing, as the solution in the uppermost layer,
an expression for the vertical velocity that allows tro-
pospheric energy to be radiated away to upper levels.
Eliassen and Palm (1960), Charney and Pedlosky

" (1963) and Lindzen (1974) discuss the choice of an

upper boundary condition which corresponds to up-
ward energy flux. In the present case, the upper bound-
ary condition is

1

~(w = vy+k) g; (ol/2%) + i(g fi In6,

1/2
_d?—) (pd*W) = 0.
amn

k

In this form, a uniform basic state wind is assumed

above the top model layer and a term

1 1
F (k-k + Eﬁ‘)(w — vo- k)%, |

which appears as a subtraction to gd Inf,/dz, has been
neglected because 1) it is two orders of magnitude
smaller than gd Inf,/dz and 2) it would make the so-
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lution of the eigenvalue problem more complicated
(i-e., nonlinear in w).

After the vertical discretization scheme has been
applied and the boundary conditions imposed, the sys-
tem (12)-(16) forms a linear homogeneous system of
equations provided the parameterization schemes of
heating and eddy momentum transports are a linear
function of the dependent variables. In this case, the
discretized system may be written as

(A—wB)Z =0, (18)

where
Z= (121, D1, Dis a1, Wl-l/z, 122, Dyye e e
R éN—la ﬁN*l’ ﬁN—l; aN—l’ WN—I/Z,
Uy, Oy, Dn, 9N, M"’1v+|/2), (19)

and A and B are SN X 5N matrices of the coefficients
defined by Egs. (12)-(16). Eq. (18) is the representation
of a complex generalized eigenvalue problem, where
the frequency w is the eigenvalue and Z is the corre-
sponding eigenvector. This representation has been
used by Yamasaki (1969). However, there are only 3N
independent eigenvectors because it is possible to
eliminate i, p from (12), (13), (14) and (16) to give
only 3N prognostic equations.

Pedlosky (1964) and Koss (1976) have discussed the
representation of initial conditions using a discrete set
of eigensolutions.

Raymond (1976) defined the initial condition at the
surface only and let the vertical structure be determined
by the eigenfunctions of interest, namely, one corre-
sponding to the most unstable mode. The surface initial
condition may then be reproduced if enough wave-
numbers are considered. The procedure to be followed
here will be a generalization of Raymond’s approach.

We use all 3N modes which may be unstable, neutral
or stable. To allow an arbitrary initial condition to be
represented, Eq. (10) may be written for all variables
in vector form as

ZUx, y, 0) = Zo + ff 2k, )™ rdk.dk,, (20)

where
Z(xa 1A t) = [ul(xa Y, t)s vl(xs Y, t)a pl(xa Vs t)3
01(x3 Vs t)a wl-l/2(x9 Y, t), uZ(xs Y, t)a ceey uN(x, Y, t)9

UN(xa .V, t), pN(x’ y, t), 0N(xa ya t)’ WN+1/2(xa Y, t)]’
21

and Z, contains the given basic state variables. At
t = 0, the Fourier transform of Eq. (20) gives

7 _ ; — —ik-r
Z(k’ 0) - (21!')2 [f [Z(xa Vs 0) ZO]e dxdy'

(22)
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We define

3N
2k, 1) = 3 Clk, mZ(k, m)e“®m . (23)

m=1

where the summation is over all the modes (unstable,
stable and neutral) which are eigensolutions of (18)
for each k. The coefficient C(k, m) may be determined
at ¢ = 0 by using the 3N variables in Z(k, 0) which
correspond to the set of linearly independent solutions.

Given the initial condition and its Fourier transform
through (22), Eq. (23) may be solved as a linear system
of 3N equations in 3N unknowns.

Evaluation of the integrals in (20) and (22) requires
discretization in which the integrals are replaced by
sums. With discretization of the Fourier transforms
and subsequent truncation of the series, the bound-
edness conditions at an infinite horizontal distance are
replaced by periodicity at the largest scale resolved. In
the present case, k = n,(2w/Li) + n,(2w/L,j), with
L, = L, = 300 km and n,, n, ranging from —30 to
+30. For n, = n, = 30 the wavelength is 7.1 km.

In this paper, the sensitivity of w to different pa-
rameters and to environmental conditions is tested;
the evolution of an initial condition will be presented
in a later paper.

3. Parameterization of small-scale processes

The model described in this paper is intended for
mesoscale analysis and, with this purpose, will look
into scales from ten to a few hundred kilometers. The
cumulus scale falls into the smaller scale and obviously
plays a very important role in the description and un-
derstanding of mesoscale motions; therefore, we pa-
rameterize the cumulus scale. This is a crucial step,
however, since relatively little is known of the detailed
interaction between cumulus-scale and mesoscale mo-
tions.

a. Cumulus heating

The diabatic heating in the cumulus scale affects
the mesoscale temperature fields through the term
¥s on the right-hand side of Eq. (15). The horizontal
advection of temperature by the small scale in ¥, will
be neglected under the assumption that the adiabatic
heating rate offers a bigger contribution. A future re-
vision of this model might attempt to include these
terms perhaps through the so-called pseudo-viscosity
concept used to parameterize turbulent transports (see
Cotton, 1975). Here Q is the mesoscale diabatic heating
and is neglected since there is no mesoscale moisture
field in the present model. All the moisture is in the
cumulus-scale processes.

The CISK (Conditional Instability of the Second
Kind) mechanism, as envisioned by Ooyama (1963),
Charney and Eliassen (1964) and very well described
by Ooyama (1969), is based on the idea that cumulus
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clouds and large-scale tropical systems support each
other, the cumulus cells by supplying the heat energy
for driving the depression and the depression by pro-
viding low-level convergence of moisture into the cu-
mulus cells.

This physical mechanism may be used to explain

interaction between the cumulus scale and the me-
soscale as well, even if the time scale of mesoscale
events is not as long as that of large-scale systems,
because the convergence supplied by mesoscale systems
is typically one or two orders of magnitude larger than
that provided by large-scale systems.

We define the heating function

Yo = 1(2)Wwm, (24)

where Wy is the vertical velocity at the top of the
moist layer (zy1) and 7(2) is specified by the profile

P\ . z—z¢
al—) exp(bz sm(-:r ),
(P) p(62) \ 21—~ Z¢

Zc<z<zr (25

n(z) =
0, z<zcorzz= zr,

where zc and zr are cloud base and cloud top respec-
- tively and b is adjusted to change the level of maximum
heating rate (zmy).
Stevens and Lindzen (1978) constrained «, the in-
tensity of the heating rate using a precipitation budget.
We shall instead impose the constraint

! do
n(zmL) = & -d_zo (zmL)-

(26)
For é = 1, this condition ensures that the parameterized
cumulus heating equals the mesoscale adiabatic cooling
at the level zyy . Sensitivity to é is shown in Table 1.
Emanuel (1982) recommends that é remain less than
or equal to 1, otherwise, conditional instability of the
first kind will result.

b. Momentum mixing

~ Observational studies (e.g., Houze, 1973) have

shown that vertical momentum transport by cumulus
may be of the same order of magnitude as the large-
scale vertical momentum transport. The mesoscale
contribution and cumulus-scale contribution are di-
agnosed as a single quantity so that no real assessment

of the former has been done. In modeling the mesoscale -

motions, the cumulus-scale transports also play an im-
portant role. Schneider and Lindzen (1976) parame-
terized the momentum exchange by cumulus convec-
tion for -use in large-scale models of the tropical at-
mosphere. Experiments using this parameterization in
this mesoscale model are in progress. In this paper,
we present only results in which momentum transport
by the small-scale are neglected (i.c., for which y,
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=y, = ¢, = 0) and the mesoscal%e transports are ex-
plicitly computed.

4. Model vertical structure

The model vertical structure may be seen in Fig. 1.
The top boundary is placed just above the tropopause
at 16 km. The model vertical resolution was set at 1
km so that there are 16 levels in the vertical. Tests
using vertical spacing less than 1 km showed that the
eigenvalues were essentially unmodified. However, de-
creasing the resolution to 2 km from 1 km produced
eigenvalues that differ by as much as 50%. The model
without any parameterization scheme is able to re-
produce the speed of internal gravity waves and in-
stability characteristics of waves produced by shear
instability in stratified flows (Silva Dias, 1979).

5. Sensitivity to small-scale parameterizations

The basic state is derived from the mean state during
GATE as computed by Thompson ez al. (1979). Fig.
2 shows the wind hodograph labeled East Atlantic
(hereafter E Atlantic) which was obtained by averaging
the winds in the B-scale during GATE. It may be noted
that there is considerable directional shear of the winds
from the surface up to 700 mb. Above that level, the
winds are basically from the east. Fig. 3 shows the
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FIG. 2. Wind hodographs for GATE B-scale (E Atlantic) from
Thompson ez al. (1979) and for KEP triangle (W Pacific) from Reed
and Recker (1971). L, R denote group velocity vectors associated
with left- and right-moving modes.
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F1G. 3. Potential temperature for GATE B-scale (E Atlantic) from
Thompson et al., (1979), for KEP triangle (W Pacific) from Reed
and Recker (1971) and for the mean between temperature soundings
in the ships Dallas and Oceanographer on 5 September 1974 at 900
GMT (Day 248) during GATE. Also shown are the constant static
stability profiles used in sensitivity tests.

potential temperatures labeled E Atlantic for the same
period. In this section, we shall use a simplification of
profiles in Figs. 2 and 3: the east-west component of
the E Atlantic profile and a constant static stability
profile.

a. Cumulus heating parameters

Table 1 shows the range of variation allowed for
each of the cumulus heating parameters. Cloud base
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height z- has been varied between 0.5 and 1.5 km.
Cloud top height has been varied between 10 and 14
km. Observations during GATE report cloud bases
between 400 and 600 m and tops of cumulonimbus
from 10 to 15 km (Houze and Cheng, 1977).

The height of the top of the moist layer zp; has
been allowed to vary between 1 and 3 km. It is assumed
that most of the moisture convergence in a column
occurs in the moist layer; according to Gray (1977)
the strongest convergence in GATE systems occurs
below about 800 mb or 2 km.

The level of maximum heating rate zyy has been
varied from 4.5 to 9 km. Nitta (1977), in a large-scale
budget of periods with different levels of mesoscale
activity, found the level of maximum heating rate to
be at 7.5 km. Yanai et al. (1973) also found zyy at
7.5 km. Thompson er al. (1979) found the level of
maximum heating rate at 4.5 km. Williams and Gray
(1973) report this level at about 8.5 km. Johnson (1978)
reports zyy between 6 and 8 km. It is not known if
the variability of zyy in diagnostic studies is due to
mesoscale or convective-scale differences, or to the
pronounced life cycle changes observed in convective
systems (Betts, 1978).

b. Eigenvalues

The eigenvalue computation has been run for dif-
ferent wavenumbers (71, n,) for case 1 (Table 1). The
solution of (18) produces a set of eigenvalues, the most
unstable one being' the one with greatest imaginary

TABLE 1. Sensitivity of scale selection, phase velocity and group velocity with regard to cumulus heating parameters.

Heating Growth Group
Zc Zr Zmu ZMH intensity rate Scale selection  Phase velocity  velocity Direction from

Case (km) (km) (km) (km) parameterd (107°s7) (ny, 1) (ms™) (ms™) (deg)

1 0.5 12 2 7.5 1 305 (£14, 0) +6.6 7.6 90

2 1.5 12 2 7.5 1 934 (%16, 0) +3.6 5.0 90

1 922 (0, 16) 0. 3.9 90

3 0.5 10 2 7.5 1 625 (%12, 2) +3.2 5.0 86

1 612 0, 12) 0. 36 g{;

4 0.5 14 2 7.5 1 228 (=14, 0) +6.9 5.8 90

5 0.5 12 1 7.5 1 792 (8, 12) +2.5 47 78

1 736 (£16, 0) +4.0 4.6 1(9)(2)

6 0.5 12 3 1.5 1 209 (%12, 0) +6.0 4.8 270
7 0.5 12 2 4.5 1 — *

8 0.5 12 2 6.0 1 184 (£16, 0) +6.2 4.7 90

9 0.5 12 2 9.0 1 702 (£12,0) +2.4 4.0 90
0 05 12 2 15 0.5 — .

11 0.5 12 2 7.5 1.5 866 (8, 16) *1.1 3.0 1;7)3

* No scale selection.
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part w; or fastest growth rate. Fig. 4 shows the most
unstable eigenvalues for n, = 30, . . . ,0,...,30and
n,=0,...,30. The part of the diagram corresponding
ton, = —30,...,0is not shown because it is equivalent
to that shown (by point symmetry through the origin).
It is easily verified from (1 2)-(16) that if w is a solution
for wavenumber (n,, ny), then —w* (* denoting com-
plex conjugate) is a solution for wavenumber (—n,,
~ny), so that the real part of w changes sign and the
imaginary part corresponds to an unstable mode. Figs.
4a, b show isopleths of w, and w;, respectively, for the
most unstable mode. In Fig. 4b it may be noted that
the growth rate attains a maximum value for a single
mode which is represented by wavenumbers (—14,0)
and (14, 0), i.e., for about 20 km wavelength scale in
the east-west direction and infinite wavelength in the
north~-south direction. .

The growth rate of this mode, expressed in terms
of 1/w;, is 5.5 min. Raymond (1975) obtained growth
rates of the same order of magnitude for similar wave-
lengths. This mode travels toward the west with phase
'speed of 6.6 m s, In Fig. 4a, the upper right and left
corners show a reversal of the sign of phase speed due
to the fact that a different mode has become the most
unstable mode.
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The scale selection seen in Fig. 4b has not been
obtained with wave-CISK type models (Hayashi, 1970;
Lindzen, 1974) which do not inclide basic state wind
shear. Raymond (1975) and Sun: (1978) also found
scale selection similar to the orie obtained here.

c. Group velocity

The group velocity is defined in heutral wave studies
as the velocity at which a packet of waves with slightly
different’ wavelengths will propagate; this is given by
(see Bretherton, 1969)

dw, .  dw,,
Cylky, k) = 5;1 + (—97(- .
X Y

- In the case of a non-neutral packet of waves, the
expression above is valid at the initial stage of growth,
although as a particular wave with higher growth rate
starts to predominate, the propagation velocity will
tend to the phase speed of this particular unstable
mode.

d. Sensitivity to cumulus heating parameters

Table 1 summarizes the results of varying z¢, zr,
ZmL, Zmu and the heating intensity & in terms of wave-
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number of maximum growth rate, phase velocity and
group velocity derived from diagrams similar to Fig.
4. In a few cases where there was another local max-
imum in growth rate, of comparable magnitude, it has
been listed in order of decreasing growth rate.

There is some variability in the resulting wavenum-
ber of scale selection, phase velocity and group velocity.

The least sensitive result seems to be the wavenum-
ber of maximum growth rate. Except in the last case
where there is excessive cumulus heating, if there is
scale selection, one of the modes selected is for wave-
numbers (14 £ 2, 0 = 2). However, for case 7 where
the level of maximum heating rate is low (at 4.5 km)
and case 10 where the heating intensity is less than
the mesoscale adiabatic cooling-heating term, there is
no selection of most unstable mode: growth rates keep
increasing toward lower wavelengths as in classical
wave-CISK type instability computations.

Phase velocity appears sensitive to cloud base (z¢)
and cloud top (z1) as well as the height of the moist
layer zyy and the level of maximum heating zyy.

The effect of changing the top of the moist layer
(zmp) is not straightforward and is very much model-
dependent due to the particular vertical stratification
and vertical extent of the model. When the top of the
moist layer is changed, the vertical velocity that is used
in the cumulus heating parameterization is also
changed [cf. Egs. (24) and (26)].

The effect of changing the heating amplitude has
been discussed by Chang (1976). His model, however,
did not include vertical shear of basic state wind. He
showed that the growth rate increased approximately
linearly with increasing heating while the phase speed
remained constant. With wind shear, we find the same

14.5

l3.5:
12.5
1.5 I
|0.5‘
9.5 i
85
7.5'
6.5P
5.5
4.5
3.5_
2.5.
1.5 i

[P B |

HEIGHT (km)
i

L Lo

PR T T Y

05 I

FI1G. 5. Vertical structure of terms in the thermodynamic equation
(15) for most unstable mode at wavenumber (—24, 20). See text for
details; ¢, = —10.8 m 57!, e-folding growth time = 405 s. A (solid
line): —#(z)wmy; B (dot-dash line): wdby/dz; C (dashed line): db/dt;
D (dotted line): v- V4,

SILVA DIAS, BETTS AND STEVENS

1711

14.5:

3.5}
2.5
1.}
105
9.5
8.5/
7.5
65l ¢
55

as}
35
2.5F
151
osl

HEIGHT (km)

FIG. 6. As in Fig. 5 but for second most unstable mode at wave-
number (—24, 20); ¢, = —14.7 m 57}, e-folding time = 497 s.

conclusion regarding the growth rate, but the phase
speed is sensitive to the cumulus heating intensity.

e. Vertical structure of eigenvectors

For each wavenumber vector there are two most
unstable modes with comparable growth rates. Using
wind and temperature profiles for the East Atlantic
and “Case 1 heating parameters, as in Fig. 4, Figs. 5
and 6 show the vertical structure of the two modes
for wavenumber (—24, 20) through a plot of the several
terms of the thermodynamic equation. Fig. 5 shows
that, for example, the horizontal advection of potential
temperature (curve D) is small when compared with
the other terms in the lower part of the model. How-
ever, above 6.5 km this term almost cancels the adi-
abatic heating-cooling (curve B). The parameterized
cumulus heating (curve A) is quite large, giving rise
to a large temperature tendency (curve C) in middle
levels.

Figure 6 displays a quite different structure for the
second, slightly less unstable mode in that the cumulus
heating term (curve A) is relatively minor in compar-
ison with other terms throughout the troposphere. Note
that amplitudes at the top of the moist layer (zj) are
rather small. In order to understand this mode, the
model was run with the same heating parameters and
basic state temperature, but with a vanishing mean
flow. Fig. 7 shows that this mode survives in the absence
of a mean flow with essentially identical vertical struc-
ture. This second mode apparently represents a con-
vective overturning of the atmosphere in which heating
serves to initiate the convection.

Examining the several terms of the vertical velocity
equation for this case without mean wind (Fig. 8), it
is evident that the motion is nonhydrostatic with large
vertical velocity accelerations mainly in the lower half
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of the troposphere. In fact, with wind, the mode of
Fig. 5 also has large vertical velocity accelerations. This
is understandable since vertical and horizontal scales
for that wavenumber are comparable and therefore
the hydrostatic approximation should not hold.

6. Sensitivity with respect to basic state

One of the objectives of the present research is to
understand the dependence of mesoscale features on
large-scale characteristics. We. present the sensitivity
of the eigenvalues of Eq. (18) to basic state profiles of
wind speed, potential temperature and wind direction.

The basic state profiles used are variations about
tropical soundings. The winds, for example, are ev-
erywhere less than 15 m s~! which is much less than
in the environment of midlatitude mesoscale systems.

a. Wind speed

The mean profile over the GATE area, shown in
Fig. 2, displays a low-level jet (LLJ) around 600 mb
and an upper level jet (ULJ) at 175 mb. For the western
Pacific (also shown in Fig. 2) the LLJ is almost non-
existent in the mean obtained by Reed and Recker
(1971); the ULJ however, is very pronounced. This
section investigates the sensitivity of the eigenvalues
of Eq. (18) to the absence or presence of ULJ and LLJ
in parallel flow (i.e., without directional wind shear).

The basic state temperature is the one labeled “N?
= const” in Fig. 3. Fig. 9 shows the zonal component
of the E Atlantic wind hodograph of Fig. 2 and also
the wind profiles (a) with removal of the LLJ and (b)
with removal of ULJ. Case 1 cloud heating parameters
" are used.

Table 2 summarizes the results obtained. The most
striking result is obtained by removing just the LLJ
(while keeping the ULJ); the most unstable mode is
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one which travels to the east (Table 2, case 2) although
the second most unstable mode, with growth rate only
10% lower, travels to the west. If, however, the ULJ
is removed and only the LLJ is present (Fig. 9b), then
the resulting eigenvalues (Table 2, case 3) are almost
the same. as the ones in Fig. 4 (case 1, Table 1).

In this case, the second most unstable mode (not
shown), which travels due east, has growth rates about
30% lower, showing a clear preference for the mode
traveling due west.

Observations of squall lines in West Africa (Fortune,
1980) and in the GATE area (Houze, 1977) show am-
bient winds which clearly have a LLJ. This model test.
also suggests that the LLJ rather than the ULJ is im-
portant to the growth of a westward moving mode,
although the phase and group velocity are rather less
than those of observed squall lires over land.
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FIG. 9. Zonal component of E Atlantic wind hodograph (solid
line) (a) lower level jet, removed (dotted line); (b) upper level jet
removed (dashed line).
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TABLE 2. Sensitivity of scale selection, phase velocity ¢, and group velocity ¢, with regard to basic
state wind speed (from Fig. 9) and temperature profile (from (Fig. 3). Case 8 includes directional shear.

Temperature Scale select c e Direction from

Case Wind profile (n,, ny) (ms™") (ms™) (deg)
1 E Atlantic const N? (x14, 0) +6.6 7.6 90
2 No LLJ const N? (£18, 0) +8.8 7.6 270
3 No ULJ const N? (%14, 0) +6.9 5.9 90
4 E Atlantic const N?/2 (%16, 0) +4.7 33 90
5 E Atlantic E Atlantic (x16, 0) +6.8 4.0 90
6 E Atlantic W Pacific (x14, 0) +4.0 5.0 90
7 E Atlantic D.248 (x16, 0) +4.3 3.8 90
8 " E Atlantic const N2 (-12, 8) 7.4 6.4 130
Fig. 2 (14, 0) 6.8 6.0 98

b. Potential temperature

The potential temperature profiles in Fig. 3 show
that the E Atlantic and W Pacific curves have the same
slope from the surface up to 8 km although the E
Atlantic curve shows lower temperatures. Above 8 km
and below 13 km, the W Pacific curve shows a higher
derivative dfy/dz, or greater stability. The curve labeled
Day 248 shows higher stability below 8 km and about
the same slope as the Pacific curve above 8 km.

The eigenvalues of Eq. (18) have been computed
for the temperature profiles of Fig. 3 together with the
basic state wind of the E Atlantic (Fig. 9). The sum-
marized results may be seen in Table 2. By comparing
case 1 and case 4 in Table 2, it may be seen that
lowering the static stability, although not producing
significant differences in the eigenvalues, diminishes
both the phase velocity and the group velocity, while
slightly displacing the most unstable mode to a smaller
wavelength. Using the other # profiles in Fig. 3 did
not change the results by much, so that we may assume
the basic state potential temperature is not as crucial
a parameter as the basic state wind field. In what fol-
lows, the profile of constant static stability (N2 in Fig.
3) will be used for simplicity.

¢. Directional shear of the wind

This section will show two examples of how crucial
the directional shear of the wind can be to the eigen-
values of Eq. (18). Fig. 10 shows the eigenvalues of
Eq. (18) using the eastern Atlantic wind profile in Fig.
2. This may be compared with Fig. 4 where the same
parameters were used without directional shear. It may
be seen that the mode of Fig. 4 has its growth rate
intensified by directional shear and its scale displaced
so that it travels to the right of the basic state wind.
It may be noted also that the basic state winds turn
clockwise with height from lower to middle levels.

Klemp and Wilhelmson (1978b) have already found
intensification of right-moving storms with a clockwise
turn of the wind, although their mechanism seems
related more to individual cell motion than the me-
soscale dynamics.

7. Differences in tropical regimes

In this section, we explore the possibility of whether
a linear instability analysis is able to distinguish be-
tween different tropical regimes based only on the basic
state wind profile.

The profiles chosen are: 1) the ones in Fig. 2 for E
Atlantic and W Pacific (Reed and Recker, 1971) mean
conditions and 2) wind hodographs for categories 1,
3, 5 and 7 of the Thompson et al. (1979) easterly wave
(Fig. 11).

For each of the wind hodographs mentioned above,
Table 3 shows some features of the two most unstable
modes, labeled right moving and left moving mode
with respect to the basic state middle to lower level
winds. The vector group velocity of these two modes
has been plotted over their respective wind hodographs
in Figs. 2 and 11 and labeled L for left moving mode
and R for right moving mode.

The basic state wind hodographs which turn clock-
wise with height are: East Atlantic, Category 1, Category
3. All of these have a right moving unstable mode with
higher growth rate than their left moving counterpart.

The basic state wind hodographs of W Pacific, Cat-
egory 5 and Category 7, besides having a very weak
or almost nonexisting LLJ, turn counterclockwise with
height.

For the W Pacific, the left-moving mode is slightly
more unstable than the right-moving mode; in Cate-
gory 7 both left- and right-moving modes have the
same growth rates, Category 5 does not show any pre-
ferred mode in mesoscale length scales.



1714

JOURNAL OF THE ATMOSPHERIC SCIENCES

(0) wrxioSs™)

IITI‘\

nx

\ M AL A

FiG. 10. Eigenvalues of Eq. (18) corresponding to conditions of case 8,
Table 2. (a) w,, (b) w;, units as in Fig. 4.

"‘r 1 T T ) 1 L
12,713\ CATEGORY | CATEGORYR7 2
s o . | ISL % 3
ol 14 \ig 120 3 9
T 12 10, ¢
6 : /z/ .
:‘ s 1 - — J
Y -5 8 ; L -10 -5 0 5
. -0 -5 o] 5
E T T T
>0 ST— T T T
CATEGORY 3 CATEGORY 5 o
R . ’._.95
o % 52
" Se 1098 /‘[g /{:73/5
M H ] is o
L s 4 . .
. 2 3 I3 2
N 1 N Il i P
-0 -5 o] S -0 -5 o} 5
uglm-s") u (m-s )

[ # Joi2zzsase780li0llizi3iaisie]

[lloombl [sFco59 8 7 8 5 48 4 353 252 175151281

FiG. 11. Wind hodographs for categories 1, 3, 5 and 7 in Thompson ez al. (1979)
composited large-scale easterly wave, L, R denote group velocity vectors associated
with left- and right-moving modes.

VoL. 41, No. 10



15 May 1984

SILVA DIAS, BETTS AND STEVENS

1715

TABLE 3. Dependence of eigenvalues on basic state winds: differences between tropical regimes and effect of directional shear.

Right-moving mode

Left-moving mode

Basic state L c w; [ L A w; [
wind (x, 1y) (km) (ms™) (107°s7) (ms™, 2) (7, 1) (km) (ms™) (107% s (ms™, ¢)
E Atlantic (-12, 8) 20.8 7.4 239 6.4, 130 (14, 0) 21.4 —6.8 228 6.0, 98
W Pacific (—14, 0) 214 10.7 173 10.0, 100 (14, 0) 214 -10.7 174 9.7, 94
Category 1 (14, 2) 21.2 6.4 227 4.0, 273 (—14, 10) 17.4 74 226 8.0, 105
Category 3 (—12,10) 19.2 54 220 4.0, 135 (16, 0) 18.8 —5.5 206 53, 84
Category 5 Maximum growth rate for smaller scales
—no preferred mode—
Category 7 (—16, 0) 18.8 6.5 217 5.5, 120 (16, 0) 18.8 -6.5 217 5.5, 114

We thus find, in accordance with Klemp and Wil-
helmson (1978b), that there is intensification of the
right-moving storm with a clockwise turning of the
wind. However, the existence of preferred modes in
mesoscale length scales is due primarily to the existence
of a LLJ.

8. Conclusions

We have studied the sensitivity of mesoscale models
to the parameterization of cumulus heating and the
basic state wind and temperature structure using a
nonhydrostatic, nonrotating wave-CISK model. The
model is a generalization of that of Raymond (1975,
1976) combined with a different cumulus heating pa-
rameterization.

We have shown that unstable mesoscale modes exist
for wavelengths of ~20 km. In many cases, the most
unstable mode has a two-dimensional structure. The
structure of these modes (growth rate, group and phase
velocity) is sensitive to the cumulus heating parameters,
suggesting that appropriate parameterization of cu-
mulus convection remains a crucial problem for wave-
CISK models. The wavelength of maximum growth
rate (or scale selection) is somewhat less sensitive to
the cumulus parameterization.

The range of basic temperature and wind structures
used were characteristic of the eastern Atlantic during
GATE. The thermal stability does not seem to be a
critical parameter, but the unstable modes are clearly
sensitive to the wind shear structure. The existence of
a low-level jet seems to be important for the selection
of a mesoscale unstable mode. The directional shear
is also important. Clockwise turning of the wind with
height produces a more rapidly growing right moving
mode, in agreement with Klemp and Wilhelmson
(1978b).

However, there is no close agreement between the
model unstable modes and the more complex structure
of slow and fast moving convective lines observed dur-
ing GATE. Most fast moving lines moved westward
at 10-15 m 57!, rather faster than the westward moving
modes in Fig. 11, whereas the slow-moving lines in
GATE moved across the (east-west) wind shear at a

few meters per second. Clearly, more work is needed
to understand the motion of mesoscale lines.
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