Understanding the surface and BL coupling of water, CO₂ and clouds

Alan K. Betts akbetts@aol.com http://alanbetts.com AGU session A12B San Francisco December 13, 2010

Outline

- "Beyond the Resemblance Test"
- Evaluating models key observables?
- Are coupled processes well represented?
- Are diurnal, seasonal and climate time-scales well represented?
- Coupling of energetics and CO₂ to the phase transitions of water a holistic approach
- Can we make our models relevant to the real world?

Seasonal Cycle: BERMS 54N, 105W

- Not bad is it good enough?
- Model: SH too low; LH too high on May 1
- No proper seasonal cycle of vegetation
- Spring melt: large flux: 20-30 W/m²

Net radiation

- Model R_{net} low in winter by 10W/m²
- Low in spring by 30W/m²
- Why? Mostly surface albedo
- Errors are large for 'climate'

Surface albedo: still critical

- Dense forest canopies low even with snow
- Deciduous higher albedo – lower R_{net}
- Mixed landscape with snow
- 20% = 25 Wm⁻² in spring

ECMWF reduced boreal forest surface albedo: 0.8 to 0.2 with snow

- Large systematic bias reduction; snow/ice-albedo feedback
- NH 850 hPa T forecast skill improved Feb. to mid-May

Effective cloud albedo

- SWCF/SW_{clear}
- Observations well defined (80km)
- Model shows correlation, except in spring
- Good enough?
- $5\% = 15 \text{ Wm}^{-2}$ in summer
- (Tuesday: A211, 8am)

Net surface LW

- Not bad peaks when dry in spring
- Structure reflects RH and cloud changes

Net surface LW

- Point comparison: stratified by RH (LCL) & ECA (α_{cloud})
- Quasilinear clear-sky and cloud greenhouse effects
- But typically model RH and cloud distributions biased

LW_{net} and Diurnal Temperature Range – monthly mean data

• Mean LW_{net}, DTR (and NBL) correlated – how good is your model?

[Betts: JGR, 2006; Betts and Silva Dias, 2010]

Annual cycle of Diurnal Temperature Range (DTR)

• DTR increases sharply after 5 April, peaking at the time of forest leaf-out in the first week of May, and then falling as transpiration rapidly increases

Betts, 2010a

Are spring transitions correct?

- 15 April after melt
- Low transpiration
- Dry atmosphere
- Larger DTR

15 May after leafoutLarge transpirationMoist atmos., cloudsDTR reduced

More extreme at boreal latitudes

- Mid-May: frozen roots, conifer canopy at 23°C
- Surface pools everywhere but no evaporation and afternoon RH = 27%
- Cloud-base 2000m
- A 'green desert'
- too cold to evaporate
- Longer seasonal lag than New England

Energetics of ground & snow melt

- 1 meter frozen soil = 300mm water
- 1 meter snow = 100 mm water
- 25 Wm⁻² melts 6.5 mm/day
- Soil phase change gives 'sink' of 25 Wm⁻² for 45 days in spring and smaller 'source' over longer time period in fall
- As climate warms, frozen period shrinks at mid- and high latitudes *Model must be accurate as freezing point matters!*

Winter transition: T falls sharply

- Snow reflects sunlight
- Sublimation low
- Dry atmosphere
- Large outgoing LW_{net} (*reduced water vapor* greenhouse)
- Snow uncouples ground
- Temperature falls

Note trees shade snow: low forest albedo

Rough energetics: snow-on-grass

- Winter SW_{down}(clear) ≈ 130 Wm⁻² (Vermont in Feb.)
- 10cm fresh snow changes albedo from 0.15 to 0.75 & drops SW_{net} from 110 to 30 Wm⁻²
- Residual 30 Wm⁻² sublimes 1cm snow/day [1mm ice]
- Snow loss increases as snow ages
 - snow lasts \approx 5 days,
 - reducing solar heating to \approx zero
- SW_{net} impact = -80 Wm⁻² while snow lasts

LW impact of water vapor

 When cold, adding 1mm water vapor to 30% RH atmosphere reduces outgoing LW_{net} by 8 Wm⁻²

Betts & Chiu, 2010, unpublished

What are key observables?

- Surface albedo, effective cloud albedo
- **Frozen** ground, snow cover, frozen lakes – total frozen water and SW reflection
- Seasonal transitions are good integrated markers of climate system: **ice and vegetation**
- Surface RH and LCL: linked to availability of water and vegetation
- DTR coupled to surface LW_{net} coupled to WV and cloud greenhouse effect

Small Lakes: frozen period change

- Frozen period shrinking 7 days/decade
- Monitor frozen lakes as regional climate signal

Betts, 2010b

CO₂ and the water cycle

- RH and LCL **over land** linked to stomatal conductance during growing season
- Ratio of transpiration/CO₂ uptake falls as atmospheric CO₂ increases
- Potentially this lowers RH, increasing LCL/cloud-base and amplifies T_{surf} rise
- How does this impact cloud cover?
- Can we monitor this coupling on regional scales? Reflects both vegetation adaptation and changing water cycle!

Aside: Relation of RH to LCL

• Z_{LCL} is fn(T) but not p

P_{LCL}/p is weak fn(T)

Idealized BL model: doubled CO₂

- Reduced stomatal conductance gives warmer temps, higher cloud-base lower RH
- Less cloud comes from warmer temp. not CO₂ rise
- (Idealized summer model has too large an impact)
- Is this observable with rising CO₂ ?

Betts and Chiu, JGR 2010

What are my messages?

- Move away from analyzing single variables & ask: *"How well are coupled processes represented in model?"*
- Analyze the links between the seasonal cycle, vegetation and the water cycle *critical for climate change & for human society*
- Ask if model is *relevant* to the earth system, its ecosystems and human society?

References available at http://alanbetts.com

- Viterbo, P. and A.K. Betts, 1999b: The impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. *J. Geophys. Res., 104*, 27 803-27 810.
- Betts, A.K., J. Ball, A. Barr, T. A. Black, J. H. McCaughey and P. Viterbo, (2006), Assessing land-surface-atmosphere coupling in the ERA-40 reanalysis with boreal forest data. *Agricultural and Forest Meteorology, 140*, 355-382, doi:10.1016/j.agrformet.2006.08.009.
- Betts, A. K. (2009), Land-surface-atmosphere coupling in observations and models. J. Adv. Model Earth Syst., 1(4), 18 pp., doi: 10.3894/JAMES.2009.1.4 <u>http://adv-model-earth-syst.org/index.php/JAMES/article/view/v1n4/JAMES.2009.1.4</u>
- Betts, A.K., and M.A.F. Silva Dias (2010), Progress in understanding land-surfaceatmosphere coupling from LBA research. *J. Adv. Model. Earth Syst. 2(6),* 20 pp., doi:10.3894/JAMES.2010.2.6. http://adv-model-earthsyst.org/index.php/JAMES/article/view/v2n6/JAMES.2010.2.6
- Betts, A. K. and J. C. Chiu (2010), Idealized model for changes in equilibrium temperature, mixed layer depth and boundary layer cloud over land in a doubled CO2 climate. *J. Geophys. Res.,115*, D19108, 2009JD012888.
- Betts, A. K. (2010a), Seasonal Climate Transitions in New England. *Weather*, (in press)
- Betts, A. K. (2010b), Vermont Climate Change Indicators. Submitted to *Weather, Climate and Society*.