Progress in understanding land-surface-atmosphere coupling over the Amazon

Alan Keith Betts, Atmospheric Research, akbetts@aol.com Maria Assuncao Silva Dias, CPTEC,

assuncao@cptec.inpe.br

Amazon in Perspective: Integrated Science for a Sustainable Future

Manaus, November 18, 2008

Ten year perspective from LBA

- Many coupled processes
- Shortwave and longwave fluxes: clouds
 - Coupling of LW_{net} to diurnal temperature range
- Aerosols
 - role of fires in vertical transport
 - cloud microphysics & precipitation
- Partition of moisture convergence into column water vapor, cloud & precipitation
- Surface-cloud-boundary layer coupling

Surface Energy Balance

$$R_{net} = SW_{net} + LW_{net} = H + \lambda E + G$$

- the split between surface processes and atmospheric processes
- the split between SW and LW processes
- the partition between clear-sky, aerosol and cloud processes in the atmosphere
- the partition of the surface R_{net} into H and λE - controlled by the availability of water for evaporation and by vegetation

Surface SW_{net}

 $SW_{net} = SW_{down} - SW_{up} = (1 - \alpha_{surf})(1 - \alpha_{cloud}) SW_{down}(clear)$

• surface albedo

$$\alpha_{surf} = SW_{up} / SW_{down}$$

effective cloud albedo- a scaled surface short-wave cloud forcing, SWCF

$$\alpha_{cloud} = - SWCF/SW_{down}(clear)$$

where

$$SWCF = SW_{down} - SW_{down}$$
(clear)

[Betts and Viterbo, 2005; Betts, 2007]

Amazon sub-basins

- 41: Tapajos, Xingu..
- 42: Madeira
- 43: Amazonas
- 44: Negro
- 45: Purus, Jurua...

Cloud albedo: ERA-40 data

- Transformation of SWCF to α_{cloud}
- Seasonal cycle OK: small daily variability: biased???

Cloud albedo: ISCCP data

- Different clear-sky flux: Aerosol differences
- ERA-40 systematic high bias in $\alpha_{cloud} \approx +7\%$
- ISCCP has more daily variability

Rondonia forest & pasture : SWCF

[data: von Randow et al 2004]

- More dry season cloud over pasture
- Aerosol 'gap' in September burning season

Energy balance: forest and pasture

- In July, pasture has 8% higher surface albedo and 7% more cloud
- Pasture LW_{net} is greater (surface warmer, BL drier)
- Pasture $R_{net} \approx 15\%$ less than forest

LW_{net} - RH - cloud coupling

- Point comparison: ERA40 and Jaru tower
- Humidity and cloud greenhouse effects

LW_{net} and diurnal T range (DTR)

- Rainy season
 DTR and LW_{net}
 small
- Dry season
 DTR and LW_{net}
 large

LW_{net} and DTR – monthly mean data

• Mean LW_{net} and DTR correlated [Betts: JGR, 2006]

Aerosol-biomass burning issues

- role of fires in vertical transport

- cloud microphysics & precipitation

ECMWF experimental monthly aerosol analysis using MODIS 550nm data

Sept.
 2003

Sea salt Desert dust Black carbon Organic matter Sulphates

Sept.
 2004

Morcrette, 2008, personal communication & Benedetti et al., ECMWF Newsletter #116

Biomass Burning Longo et al. ACPD, 2007;CATT-BRAMS

Plume Rise of Vegetation Fires

- Heat flux: Forest: 30-80kWm⁻²; Savannah: 5-25 kWm⁻²
- Fire size distribution broad: 13 (±15)ha
 fire plume reaches 4-8km

1-D plume model, driven by Fire Emission model & coupled to 3-D CATT-BRAMS gives realistic dispersion

CO (ppbv) from CO (ppbv) from model at ~5.5 km height AIRS at 500 mb model at ~5.5 km height with plume-rise 22 SEP 2002 CO with Plume-rise (poby) 15Z22SEP2002 - lev=5.349 km EQ 105 205 305 300 40S 40S 505 505

• Mid-tropospheric CO matches AIRS much better with sub-grid 1-D plume rise model

[Freitas et al. 2006]

CO (ppbv) from

without plume-rise

CO without Plume-rise (ppby)

15Z22SEP2002 - lev=5.349 km

Aerosol-cloud-precipitation feedbacks

Lin	et	al			
2006					

 CWF: 0~176	J/kg
 CWF: 176~912	J/kg
 CWF: 912~2770) J/kg

 $CWF \sim CAPE$

Series of papers on Aerosol-Precipitation coupling

- Martins, Silva Dias, Gonçalves (2008):Modeling the impacts of biomass burning aerosols on precipitation in the Amazonian region using BRAMS: a case study for 23 September 2002 – JGR (accepted)
- **Martins** et al 2008 : Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season *Meteo. Atmos . Phys. (accepted)*
- Gonçalves, Martins, Silva Dias, 2007 Shape parameter analysis using cloud spectra and gamma functions in numerical modelling during LBA in Amazon

– Atmos Research. (in press)

Shape parameter in cloud droplet diameter distribution

$$n(D) = \frac{N_t}{\Gamma(\nu)} \left(\frac{D}{D_n}\right)^{\nu-1} \frac{1}{D_n} \exp\left(-\frac{D}{D_n}\right)$$

Observed shape parameter vs CCN concentration Numerical experiments : BRAMS

Microphysics parameters used in numerical experiments

	CCN300	CCN450	CCN600	CCN900	CCN900R
CCN	300	450	600	900	900
concentration					
Shape parameter –	2	3	4	5	5
cloud droplet and					
pristine ice					
Shape parameter –	1	1	1	1	1
all remaining					
water categories					
Radiative effect	None	None	None	None	Absorbing
					and
					reflecting

Vertical structure of cloud and ice water mixing rate observed at the time of maximum liquid water path

CCN300

Vertical transport processes

- Local fire-driven transports and convection
- Larger-scale forcing, cloud & precipitation
- Cloud-BL coupling

Precipitation and cloud coupling to vertical motion *in ERA-40 reanalysis*

- Partition of *moisture convergence* into **TCWV**, α_{cloud} , and precipitation
- Note high bias of α_{cloud} from ISCCP; but precip. generally low

Land-surface-BL Coupling

- SMI-L1 = (SM-0.171)/(0.323-0.171) (soil moisture index)
- P_{LCL} stratified by Precip. & SMI-L1 or EF
- Highly coupled system: only P_{LCL} *observable: Mixed layer depth*

Cloud - BL coupling *Jaru forest – Noon ±2h*

- Cloud amount coupled to cloud-base & RH
- Temperature decreases as cloud increases
- θ_E is flat: regulated by cloud transports

Conclusions

- Our understanding of physical processes has broadened extensively
 - Coupling of clouds to surface, BL and LW processes
 - Aerosol interactions: radiative & microphysical
 - Our ability to assess physical biases in models

Vertical motion and structure

- Ascent and dry in February [wet season]
- Descent and dry in August [dry season]

Stability differences

- Unstable for deep convection in Feb
- Stable for deep convection in Aug

