Hydroclimate Issues: Water, Energy and Carbon

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

TRACE Discussion Workshop
Silver Spring
April 18-20, 2011

Major Scientific Question

 How does climate change and climate variability affect the hydrological cycle on a sub-regional to continental scale and to what extent is it predictable?

- Broad 'motherhood' statement
 - But is it close enough to real needs?

Since 1992 the GEWEX community has ..

- Improved its models
 - but has it paid enough attention to the real world?
- Talked about making predictions but
 - model biases and simplifications limit credibility
 - Earth system too complex to be 'predictable'
- Talked about
 - making products that are useful for stakeholders
 - collaborating across federal agencies
- How can TRACE avoid 'business as usual"

Questions

How well are we modeling the regional climate system?

Where is our understanding critically lacking?

What do regional stakeholders need for planning?

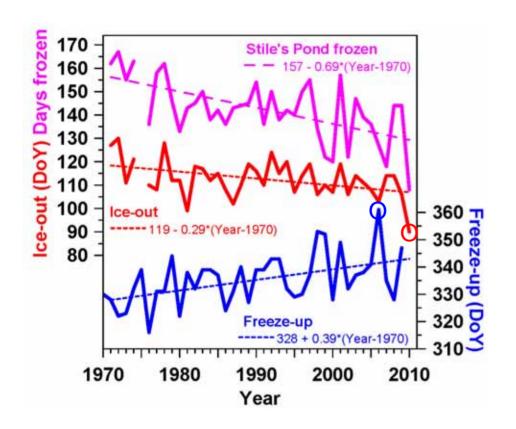
More Questions

- Climate instabilities limit predictability
 - Robust retrospective 50 yr analyses
 - What are robust trends?
 - What is driving trends in extremes?

- What are critical modes of variability in regional climate?
- What are critical observables?

Modeling Issues "Beyond the Resemblance Test"

- Evaluating models key observables?
- Are coupled processes well represented?
- Are diurnal, seasonal and climate time-scales well represented?
- Are the energetics, the phase transitions of water and the CO₂ fluxes properly coupled?
- Are our models relevant to the real world?
- Is the Spring and Fall phenology accurate?


Winter/Spring Transitions

- Snow: over-grass and under-forest albedo
- Melt: soil phase change energetics and water storage
- Pre-forest leaf-out: low EF; large DTR; low WV greenhouse
- Post-leaf-out: high EF; low DTR and high WV and cloud greenhouse
- Coupling of phase changes-phenology-C/H₂O budgets-cloud albedo-LW

What are key observables?

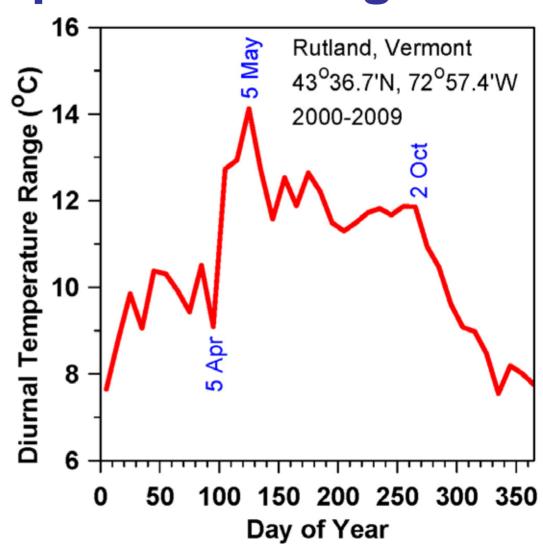
- Surface and effective cloud albedos (SW)
- Frozen ground, snow cover, frozen lakes
 - total frozen water, SW reflection, 0°C transitions
 - assimilate NCRS SCAN data?
- Surface RH and LCL
 - availability of water, vegetative resistance, CO₂
- Diurnal temp. range
 - surface LW_{net}, WV and cloud greenhouse (LW)
- Seasonal transitions
 - integrated markers of climate system: ice and vegetation

Lake frozen period shrinking fast

Interannual Variability of Ice-out is

4.2 ±0.5 days per °C

O Record Dec T


O Record spring T

- Frozen lakes are regional climate indicator
 - lce-out earlier -3 days/decade
 - Freeze-up later +4 days/decade
 - Frozen period -7 days/decade

(Betts, WCAS 2011)

Annual cycle of Diurnal Temperature Range

- Ice-out: 5 April
- Leaf-out: 5 May
- Summer transpiration
- Fall frost: 2 Oct

(Betts, Weather 2011)

Where is our understanding critically lacking?

Precipitation

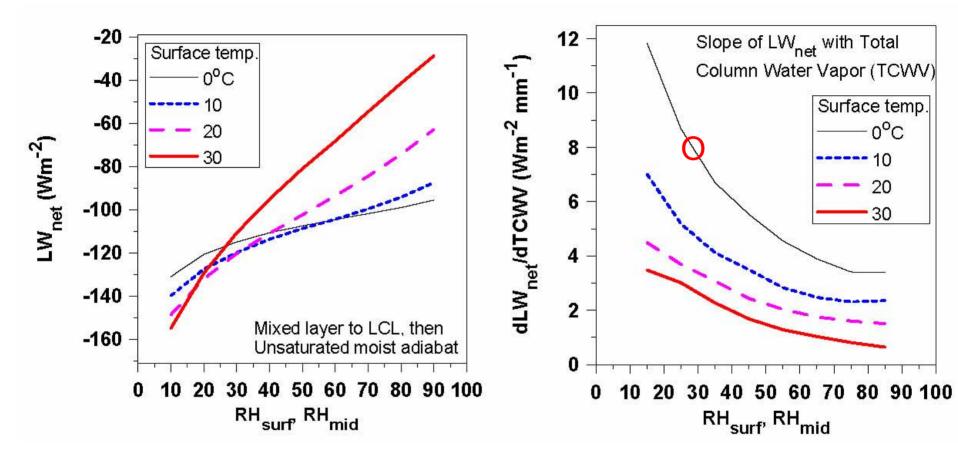
- BL coupling of ET, CO₂ uptake, cloud cover and WV greenhouse as pCO₂ increases
 - See on-line materials

Critical Precipitation Issues

- Precipitation intensity: understanding historic changes; and future climate. Not just q_s(LCL)
 - Critical for climate change adaptation and planning
- Summer precipitation-evaporation feedback
 - Adaptation to changing flood-drought frequency
- Coupling between local climate & large-scale circulation modes
 - sensitivity to climate change
- Coupling of aerosols, clouds, radiation and precipitation

What do regional stakeholders need for planning?

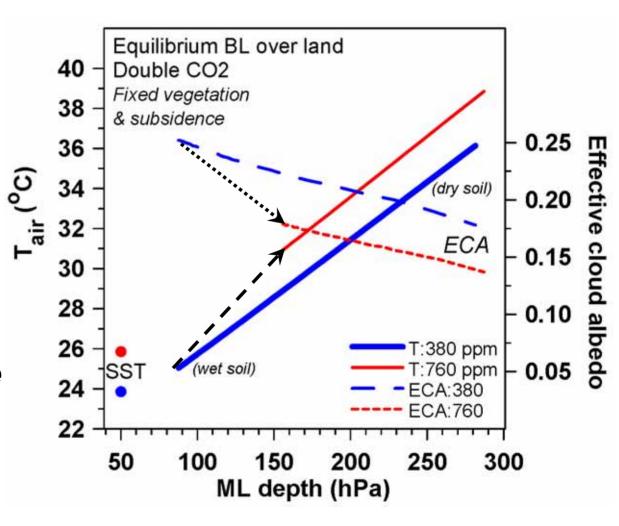
- Adaptation planning
 - Built infrastructure (future hydrologic indices)
 - Forest ecosystem management
 - Changes in carbon-water-albedo-radiation balance with tree species as climate changes
 - Winter pest survival
 - Wildlife management: as ecosystems change
 - Agriculture: food and biofuels
- Renewable energy
 - cloud cover and wind trends
- Sustainability and resilience from global economic shocks


References and this talk (more slides) available at http://alanbetts.com/research

- Betts, A. K. (2009), Land-surface-atmosphere coupling in observations and models. *J. Adv. Model Earth Syst.*, 1(4), 18 pp., doi: 10.3894/JAMES.2009.1.4 http://adv-model-earth-syst.org/index.php/JAMES/article/view/v1n4/JAMES.2009.1.4
- Betts, A. K. and J. C. Chiu (2010), Idealized model for changes in equilibrium temperature, mixed layer depth and boundary layer cloud over land in a doubled CO₂ climate. *J. Geophys. Res.*, 115, D19108, 2009JD012888.
- Betts, A. K. (2011), Vermont Climate Change Indicators. Weather, Climate and Society (in press)
- Betts, A. K. (2011), Seasonal Climate Transitions in New England. Weather (in press)

Energetics of ground & snow melt

- 1 meter frozen soil = 300mm water
- 1 meter snow = 100mm water
- 25 Wm⁻² melts 6.5 mm/day
- Soil phase change gives 'sink' of 25 Wm⁻² for 45 days in spring and smaller 'source' over longer time period in fall
- As climate warms, frozen period shrinks at mid- and high latitudes
 - Freezing point accuracy matters in models!
 - Assimilate NCRS SCAN data?


LW impact of water vapor

- Sensitivity increases with decreasing RH and T
 - Adding 1mm column water vapor reduces outgoing LW_{net} by 8 Wm⁻² at 0°C and 30% RH

Idealized BL model: doubled CO₂

- Reduced stomatal conductance gives warmer temps, higher cloud-base, lower RH
- Less cloud comes from warmer temp. not CO₂ rise
- (Idealized summer model has too large an impact)
- Is this observable with rising CO₂?

[Betts and Chiu, JGR 2010]

CO₂ and the water cycle

- RH and LCL over land linked to stomatal conductance during growing season
- Ratio of transpiration/CO₂ uptake falls as atmospheric CO₂ increases
- Potentially this lowers RH, increasing LCL/cloud-base and amplifies T_{surf} rise
- How does this impact cloud cover?
- Can we monitor this coupling on regional scales? Reflects both vegetation adaptation and changing water cycle!

Framework for a Hydrologic Climate-Response Program in New England

Robert Lent (rmlent@usgs.gov)
USGS Maine Water Science Center
http://pubs.usgs.gov/of/2009/1115/

Climate Research in the USGS Maine Water Science Center

- Since 2001 the USGS MeWSC has evaluated the impact of climate change on long-term hydrologic records in New England
- Primary work demonstrated strong relationships between climate and some hydrologic variables
- Hydrologic variables displayed consistent temporal and geographic trends

