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SuMMARY

The energy formula quoted by Green, Ludlam and Mcllveen (1966) requires an additional term if it
refers to a frame moving over the Earth’s surface. The correction is derived for steady motion of the frame
and tested observationally. The error incurred by ignoring the motion of a weather system is discussed.

1. INTRODUCTION

The analysis of airflow in a large-scale weather system is greatly simplified if the system can
be assumed to be stationary and in a steady state when observed from some reference frame moving
steadily over the Earth’s surface (Green et al., loc cit.). When this is so, streamlines of the flow
relative to the moving system are also trajectories. Green et al. used a relation between kinetic
and available potential energy to find the speed of air in a jet-stream, given the path along which
the air ascended from near sea-level in lower latitudes. In the cases studied there and by Ludlam
(e.g. 1967), the systems were virtually stationary or the latitudinal separation of the ends of the
trajectories were small, and the speeds within the jet-streams were rather accurately predicted.
However, it was mistakenly stated by Green et al. that the energy formula as written there was still
applicable if the system moved steadily and was in a steady state —a statement doubted by
W. T. Roach in a private communication.

By considering a reference frame in steady horizontal motion over the Earth's surface (dis-
cussed briefly by Eady 1949), the present note derives and discusses the energy formula for observa-
tions from the moving frame, and investigates the effects on kinetic energy computations of
neglecting the motion of a steady-state system, finding them negligible in some but not all realistic
situations.

2. THE ENERGY FORMULA IN A MOVING FRAME
The Coriolis acceleration in the momentum equation is
20AV

where @ is the Earth's angular velocity and V is the wind velocity relative to the Earth,
If V is replaced by Vr + U, where V: is the wind velocity relative to a frame moving with
constant uniform velocity U, the expression

2V, (w A U) . . ) . NG

will remain after making a scalar product of the momentum equation with V:, and hence
appear in the expression for the rate of change of specific energy observed from the moving frame.
The total specific energy of an air parcel can be found in the usual manner to satisfy
D 1 [op
- 2 —_ . = — | -=
Dt[&Vr +8Z +cpT—Lx] +2Vr-(w A U) p(bt)f . . (2)
where subscript 7 denotes a measurement relative to the moving frame, Z is the geopotential height
and T the temperature of the parcel, x is the mixing ratio of condensed water (printed with the
wrong sign in Egs. (1) and (2) of Green et al.), and g, ¢ and L have their conventional meanings.
It is assumed that air behaves as a perfect gas and that the transport of heat, water and
momentum to the parcel by radiation and turbulent diffusion can be ignored. When the system
is in a steady state relative to the moving frame, the term in (dp/dt)r on the right-hand side of Eq.
(2) vanishes and the last term on the left-hand side represents the modification needed to allow for
the translation U,
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The above treatment is valid for any two Cartesian frames in unaccelerated relative motion
but, to be useful, one frame must move parallel to the Earth’s curved surface and so accelerate
relative to the other fixed in the Earth. The effect of this acceleration is included in the following
more complete derivation.

The usual treatment of rotating frames of reference can be extended to apply to the case of
a frame rotating with steady angular velocity wy relative to the Earth; the acceleration relative to
an inertial frame can then be shown to be

-D%(V,) +2@4+w)AVi+20A (W AR)+orA(wAR)+wA(@AR) . (3)
(@) (b) () (@ (e
where R is the radius vector from the Earth’s centre. Of these terms,
(b) vanishes on making a scalar product with Vr in the derivation of the energy formula;

(d) has a magnitude about 1/50 of that of (c) when wy is appropriate to the motion of large
weather systems; its effect is comparable with that of the curvature of the conventional co-ordinates
(see, for example, Hess 1959, p. 166) and likewise may be neglected;

(e) is the familiar centripetal acceleration which becomes part of the apparent gravitational
acceleration observed at a fixed point on the Earth.

Hence, when the reference frame moves at speeds typical of large weather systems, the only
term contributing significantly to the expression for the rate of change of specific energy, and
containing the motion of the reference frame explicitly, is (c) of the expression (3). Noting that
wy; A R is U, scalar multiplication by Vy yields just that term derived in the simpler treatment
above, though in the more complete derivation it is wy, and not U, which is constant.

Clearly we can define an apparent pressure gradient balancing the Coriolis acceleration
associated with the motion of the frame. That is

fkAU=—V(gZ) . : . . @

where k is the unit vector perpendicular to the Earth’s surface, and f is the conventional Coriolis
parameter (a technique of synoptic analysis of relative flow based on this relation has been used
for some time in this Department by R. S. Harwood). Since Z; is a function of position only, the
scalar product of Eq. (4) with V, may be inserted in Eq. (2), the left-hand side of which may be
integrated with respect to time to give a simple expression for the total specific energy of an air
measured from the moving frame (in which the motion system is assumed to be stationary and
steady):

V2 +g(Z—2) +cp T — Lx = constant . . (5)

This is the correct form of Eq. (2) of Green et al.

3. THE CORRECTION TERM FOR ZONAL FRAME MOTION; COMPARISON WITH OBSERVATIONS

A reference frame moving zonally eastwards is suitable for the analysis of many mid-latitude
weather systems. Neglecting the trivial influence of vertical motion, we find

gZs = %  wyR% cos 2 ¢ + constant . . . )
where ¢ is latitude.

From Egs. (5) and (6) it is clear that, if the term in Z; is neglected when an air parcel is
moving northward, the increase in specific kinetic energy computed from the remaining terms of
Eq. (5) will be too large. For example, if air moves from 40°N to 50°N in a system moving east
at 10 ms™ (at 45°N), gZ; decreases by 115 X 10° ergs g~ along the trajectory, which is the
energy equivalent of unit mass decelerating to rest from 47 m s~

Mcllveen (1966) compared rather small changes of specific kinetic energy along trajectories
confined to the upper troposphere, estimated from observations of winds, with changes computed
using Eq. (2) of Green et al. Since in this case a trough was approaching western Europe at
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Figure 1. Observed changes of specific kinetic energy of relative motion (KE,) compared with those com-

puted. Points obtained by including the term in gZy in the computation of KE; (using Eqs. (5) and (6)) are

indicated by full circles; they are joined by horizontal lines to the corresponding points obtained by ignoring

the term in gZ; (open circles). The envelope indicates the probable maximum effects of errors of observation
and analysis.

12 ms7%, the neglected term in Z; was important when trajectories spanned more than a few
degrees of latitude. As is shown in Fig. 1, 17 out of the 26 changes of specific kinetic energy
computed using the incorrect expression differed from those observed by more than 6 X 10%ergsg™!
(the maximum discrepancy attributable to inaccuracies of observation and analysis), whereas,
using the correct expression (Egs. (5) and (6)), only three discrepancies significantly exceeded
this limit. All large discrepancies were markedly reduced by the incorporation of the term in Zy
and in only one case was a small discrepancy significantly increased.

4. CRITERIA FOR IGNORING THE MOTION OF A SYSTEM

Putting Ve, = V — U in Eq. (5) and intergrating between end points 1 and 2 of a trajec-
tory, three terms of the resulting expression for the change in # V2 contain the velocity of
translation U. They are

[U:-V —§U? 4 gZ];2 . X ) )

where square brackets denote the difference in the enclosed terms between the end points 1 and 2
of the trajectory. This expression is equivalent to the term in the local rate of change of pressure
with time which appears in the usual derivation of the energy formula for a frame fixed in the earth.

To see the effect on energy computations of ignoring the motion of a weather system, consider
again air flowing with a northward component in a steady-state system moving zonally eastward
with constant angular velocity. The terms of expression (7) tend to cancel, and do so completely
when zonal angular momentum is conserved. The latter conclusion follows when the condition
for zero torque of the pressure gradient about the Earth’s axis of rotation is inserted in

(a consequence of the system being steady in the moving frame).

In general the fractional error in V, (the computed wind speed at the end point (2) of a
trajectory), incurred by ignoring the motion of the frame, may be obtained from expression (7),
and, if small, is given by

€= — [Uu — } U? + gZ/]3/V,?

where u is the westerly component of the wind velocity.
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In realistic conditions wy is much smaller than w so that the second term in brackets can be
ignored in comparison with the third. Neglecting the variation of f with latitude, Eq. (4) gives

gZy = — Ufy + constant

where y is the distance along a meridian from an arbitrary zero; since the change in u along a
trajectory is usually much greater than that in U, we obtain

€= —Ulu—plAVEA : : . : €))

In the extreme case of conservation of zonal angular momentum, the terms in square brackets
cancel and the correction € vanishes, as has been deduced alternatively above. In most realistic
conditions, however, the second term in brackets is somewhat larger than the first giving

U [£0r =)
“vz{ v, } 0O

In a similar manner it can be shown that the error in the relative wind speed V,, computed
using Eq. (5), but while ignoring the term in Z;, is given by Eq. (9) also.

Thus the movement of the system can be ignored if U is sufficiently smaller than V, to out-
weigh the term involving the meridional displacement (in curly brackets in Eq. (9), and normally
at least of order unity). Such conditions are often met on the equatorial flanks of westerly jet-
streams where f (¥, — ¥;) & 2 V,; other cases would have to be considered individually.

Gereen et al. computed specific kinetic energies in jet-streams associated with almost stationary
weather systems. However, because of the inevitable uncertainties of analysis, it is possible that
in those cases the systems were actually moving with speeds of as much as 2 m s™!: Eq. (9) shows
that, even assuming such motion, negligible errors are produced in kinetic energy computations
by taking the system to be stationary, since speeds in the jet-streams were of order 50 m s~ and
the term in curly brackets was of order 2. By contrast, the case considered by Mcllveen (loc cit.
and Fig. 1) involved a system moving at 12 m s™! and wind speeds of order 30 ms™. Since
meridional displacements were similar to those considered by Green et al., the resulting values
of € were large, as is apparent in Fig. 1.

5. CoNcLusioN

The energy formula in a frame rotating steadily relative to the Earth contains a term, explicitly
involving this rotation, which reduces to a simple form (Eq. (6)) when the axes of rotation of the
frame and the Earth are parallel. In this form the magnitude of the correction has been verified
using the analysis of a rapidly moving trough in middle latitudes. The energy formula may be
used ignoring the effects of motion of a steady-state weather system (the local rate of change of
pressure in a reference frame fixed in the earth, or the additional Coriolis term if the frame is
fixed in the moving system) when the error defined by Eq. (9) is small, and in particular along
trajectories in the equatorial flanks of westerly jet-streams in slow-moving systems.
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