Land-surface-snow-cloud Climate Coupling

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

Co-authors: Ray Desjardins, Devon Worth Agriculture and Agri-Food Canada Ahmed Tawfik NCAR

Atmospheric Sciences, Texas A&M College Station, TX April 4, 2016

Climate Processes

- Solar seasonal cycle
- Temp., RH, Cloud, Precip. coupled
- Reflection of SW
 - <u>Clouds</u>: Water drops, ice crystals
 - Cools surface
 - <u>Snow and ice</u> on surface
 - Cools surface
- Water vapor/<u>clouds</u> trap LW
 - Re-radiation down warms surface

This talk

- Northern latitude climate
 - Large seasonal cycle
 - Cold winters with snow
 - Snow is a fast climate switch
 - Two separate "climates" above and below the freezing point of water
 - Summer hydrometeorology
 - T and RH have joint dependence on radiation and precipitation on monthly timescales
 - Observational evaluation of models
 - Remarkable 55-yr hourly data set with opaque/reflective cloud observations

15 Prairie stations: 1953-2011

- *Hourly* p, T, RH, WS, WD, <u>Opaque Cloud</u> by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

http://alanbetts.com

- Betts, A.K., R. Desjardins and D. Worth (2013a), Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118*, 1–19, doi:10.1002/jgrd.50593
- Betts, A. K., R. Desjardins, D. Worth, and D. Cerkowniak (2013), Impact of land use change on the diurnal cycle climate of the Canadian Prairies, J. Geophys. Res. Atmos., 118, 11,996–12,011, doi:10.1002/2013JD020717.
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies. *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021168
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014), Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos. 119, 13305-13326, doi:10.1002/2014JD022511
- Betts, A.K., R. Desjardins, A.C.M. Beljaars and A. Tawfik (2015). Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front. Earth Sci. 3:13. http://dx.doi.org/10.3389/feart.2015.00013
- Betts, AK and A.B. Tawfik (2016) Annual Climatology of the Diurnal Cycle on the Canadian Prairies. Front. Earth Sci. 4:1. doi: 10.3389/feart.2016.00001
- Betts, A. K., R. Desjardins and D. Worth (2016). The Impact of Clouds, Land use and Snow Cover on Climate in the Canadian Prairies. Adv. Sci. Res., 1, 1–6, doi:10.5194/asr-1-1-2016

Diurnal Climate Dataset

- Reduce hourly data to
 - daily means: T_m , RH_m , $OPAQ_m$ etc
 - data at $T_{max/min}$: T_x and T_n
- Diurnal cycle approx. climate

$$-DTR = T_x - T_n$$

$$-\Delta RH = RH_{tn} - RH_{tx}$$

- Full diurnal Cycle:
 - 'True' diurnal ranges (Critical for winter)
 - Energy imbalance of diurnal cycle

Surface Radiation Budget

- $R_n = SW_n + LW_n$
- Define Effective Cloud Albedo

ECA = - SWCF/ SW_{dn} (clear) SW_n = (1 - α_s)(1 - ECA) SW_{dn} (clear)

Reflected by surface, clouds MODIS Calibrate Opaque Cloud data with Baseline Surface Radiation Network (BSRN)

Snow-No-snow Impact on Climate

Separate mean climatology into days with no-snow and Snowdepth >0

 $\Delta T = T:no-snow -T:snow = -9.8(\pm 0.8)^{\circ}C$

Betts et al. (2016)

Snowfall and Snowmelt *Winter and Spring transitions*

- Temperature falls/rises about 10K with first snowfall/snowmelt
- Snow reflects sunlight; shift to cold stable BL
 - <u>Local climate switch between warm and cold seasons</u>
 - Winter comes fast with snow

Betts et al. 2014

Interannual variability of T coupled to Snow Cover

- Alberta: 79% of variance
- Slope T_m -14.7 (± 0.6) K

10% fewer snow days

<u>= 1.5K warmer</u>

<u>on Prairies</u>

Opaque Cloud (Observers)

- Daily means unbiased
- Correlation falls with distance
- Good data!

Annual/Diurnal Opaque Cloud

 Total opaque cloud fraction and lowestlevel opaque cloud

- Normalized diurnal cycles (where 1 is the diurnal maximum and 0 is the minimum.
- Regime shift between cold and warm seasons: Why? Cloud forcing changes sign

Diurnal cycle: Clouds & Snow

Canadian Prairies 660 station-years of data

Winter climatology

- Colder when clear
- LWCF dominant with snow

Summer climatology

- Warmer when clear
- SWCF dominant: no snow

Transition months:

- Show <u>both</u> climatologies
- With 11K separation
- Fast transitions with snow
- Snow is "Climate switch"

Monthly diurnal climatology (by snow and cloud)

SW and LW Cloud Forcing BSRN at Bratt's Lake, SK

- "Cloud Forcing"
 - Change from clear-sky flux
- Clouds reflect SW
 - SWCF
 - Cool
- Clouds trap LW
 - LWCF
 - Warms
- Sum is CF
- Surface albedo reduces SW_n
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve
- <u>Regime change</u>

(Betts et al. 2015)

Use BSRN data to "calibrate" daily opaque/reflective Cloud at Regina

- Daily mean opaque cloud OPAQ_m
- LW cools but clouds reduce cooling
- Net LW: LW_n
 - T>0: RH dependence
 - T<0: T, TCWV also
- Regression gives LW_n to $\pm 8W/m^2$ for $T_m > 0$ ($R^2 = 0.91$)

(Betts et al. 2015)

Snowfall and Snowmelt ΔT Canadian Prairies

- Temperature falls/rises 10K with first snowfall/snowmelt
 - <u>Local climate switch between warm and cold seasons</u>

Betts et al. 2014

Warm and Cold Seasons

- Unstable BL: SWCF -
- Clouds at LCL
 - reflect sunlight

- Stable BL: LWCF +
- Cloud reduce LW loss
- Snow reflects sunlight

Snowfall and Snowmelt ΔT Vermont

- Temperature falls/rises 6.5 °C with first snowfall/snowmelt
- Albedo with snow less than Prairies

Climatological Impact of Snow: Vermont

Separate mean climatology into days with no-snow and with snow

Snow-free winters: warmer than snowy winters: +6°C

Coupling to Phenology -Lilacs

- Leaf-out earlier by 3 days/decade (tracks ice-out)
- Leaf-out changes 5 days/°C
- Snow-free winters: +6°C * 5days = 30 days earlier

Impact of Snow

- Distinct warm and cold season states
- Snow cover is the <u>"climate switch"</u>
- **<u>Prairies:</u>** $\Delta T = -10^{\circ}C$ (winter albedo = 0.7)
- Vermont: $\Delta T = -6^{\circ}C$ (winter albedo 0.3 to 0.4)
 - VT Spring phenology change = 30 days
- Snow transforms BL cloud coupling
 - No-snow 'Warm when clear' convective BL
 - Snow 'Cold when clear' stable BL

Warm Season Climate: T>0°C (April – October with no snow)

- Hydrometeorology
 - with Precipitation and Radiation
 - <u>Diurnal cycle of T and RH</u>
 - Cannot do climate with just T & Precip !
- Daily timescale is radiation driven
 Night LW_n; day SW_n (and EF)
- Monthly timescale: Fully coupled
- (Long timescales: separation)

Betts et al. 2014b; Betts and Tawfik 2016)

Warm Season Diurnal Climatology

- Averaging daily values (Conventional) $DTR_D = T_{xD} - T_{nD}$ $DRH_D = RH_{xD} - RH_{nD}$ (rarely)
- Extract mean diurnal ranges from composites ('True' radiatively-coupled diurnal ranges: damps advection)

$$DTR_{T} = T_{xT} - T_{nT}$$
$$DRH_{T} = RH_{xT} - RH_{nT}$$

• Q1: How are they related? DTR_T < DTR_D

Monthly Diurnal Climatology

Q2: How much warmer is it at the end of a clear day?

Diurnal Ranges & Imbalances

- April to Sept: <u>same coupled structure</u>
- Q1:DTR_T, DRH_T < DTR_D, DRH_D <u>always</u>
- Q2:Clear-sky: warmer (+2°C), drier (-6%)

Warm Season Climate: T>0°C (April – October with no snow)

- Hydrometeorology
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
 - Cannot do climate with just T & Precip !
- <u>Monthly timescale: Fully coupled</u> – Use regression to couple anomalies

Monthly timescale: Regression

δDTR = K + A* δPrecip(Mo-2) + B * δPrecip(Mo-1) + C * δPrecip + D * δOpaqueCloud
(Month-2)(Month-1)(Month)(Month-2)(Month-1)(Month)(Month)

δDTR anomalies

Month	K	A (Mo-2)	B <i>(Mo-1)</i>	C (Mo)	D (Mo)	R ²	R ²	R ²
						All	Precip	Cloud
May	0±0.8		-0.37±0.05	-0.37±0.04	-1.10±0.05	0.73	0.41	0.66
Jun	0±0.7		-0.30±0.03	-0.32±0.02	-0.97±0.04	0.69	0.42	0.52
July	0±0.7	-0.20±0.03	-0.25±0.02	-0.33±0.03	-1.10±0.05	0.67	0.42	0.48
Aug	0±0.7	<u>-0.07±0.02</u>	<u>-0.21±0.03</u>	<u>-0.40±0.03</u>	<u>-1.24±0.04</u>	<u>0.79</u>	<u>0.46</u>	<u>0.71</u>
Sept	0±0.8		-0.22±0.03	-0.49±0.04	-1.27±0.04	0.82	0.43	0.75
Oct	0±0.8		-0.27±0.03	-0.70±0.07	-1.33±0.04	0.77	0.37	0.70

Monthly timescale: Regression

Afternoon δRH_{tx} anomalies

Month	K	A (Mo-2)	B(Mo-1)	C (Mo)	D (Mo)	R ²	R ²	R ²
						All	Precip	Cloud
May	0±3.6	1.30±0.38	1.47±0.22	2.07±0.17	4.75±0.20	0.72	0.46	0.62
Jun	0±3.6	0.69±0.23	1.26±0.15	1.96±0.12	4.36±0.22	0.68	0.47	0.48
July	0±4.1	0.84±0.18	1.71±0.12	1.81±0.17	4.40±0.30	0.59	0.43	0.33
Aug	0±3.6	<u>0.66±0.11</u>	<u>1.23±0.13</u>	<u>2.42±0.16</u>	<u>4.08±0.20</u>	<u>0.73</u>	<u>0.53</u>	<u>0.56</u>
Sept	0±3.5		1.40±0.13	2.10±0.18	4.35±0.16	0.75	0.45	0.63
Oct	0±4.3		1.28±0.19	5.02±0.39	4.58±0.23	0.67	0.44	0.53

Monthly Regression Fits

MJJA Growing Season (Merge, Normalize by SD) $\delta Y_{\sigma} = K_{\sigma} + B_{\sigma}^* \delta Precip(AMJJA)_{\sigma} + C_{\sigma}^* \delta OpaqueCloud_{\sigma}$

Variable: δY_{σ}	K _σ	B _σ <u>(Precip)</u>	C _σ <u>(Cloud)</u>	R ² _σ	σ(δΥ)
δT _{xσ}	0±0.7	-0.33±0.03	-0.52±0.03	0.52	1.11 °C
δT _{mσ}	0±0.8	-0.21±0.05	-0.50±0.07	0.38	0.88 °C
δDTR _σ	0±0.6	-0.55±0.03	-0.39±0.03	0.62	0.83 °C
δRH _{txσ}	0±0.6	0.56±0.03	0.35±0.03	0.60	4.35 %
δRH _{mσ}	0±0.7	0.51±0.03	0.33±0.03	0.50	4.61 %
δP _{LCLtxσ}	0±0.6	-0.56±0.03	-0.37±0.03	0.61	18.6 hPa
δQ _{txσ}	0±0.9	0.50±0.04	0.03±0.04	0.26	0.58 g/kg
δθ _{Etxσ}	0±1.0	0.22±0.04	-0.31±0.04	0.09	1.95 K

Growing Season Coupling between Energy and Water Budgets and Surface Climate

- Total water storage (GRACE) coupled to precipitation variability (F=0.56)
- Betts et al. 2014b
- Climate cloud coupling: δCloud = 0.73 δPrecip
- R_n coupled to cloud variability
- Diurnal climate coupled to cloud and precipitation variability (regression)

15 Prairie stations: 1953-2011

 How has changes in cropping changed the growing season climate?

Change in Cropping (SK)

- Ecodistrict mean for 50-km around station
- 5 Mha drop (25%) in
 'SummerFallow'
 - no crops: save water
- Split at 1991 Ask
- Has summer climate changed?

Three Station Mean in SK

- Growing season (Day of Year: 140-240)
- (T_x, T_m) cooler (-0.93±0.09, -0.82±0.07 °C)
- (RH_m, Q_{tx}) (+6.9±0.2%, +0.70±0.04 g/kg)
- Precipitation: +25.9±4.6 mm for JJA (+10%)

Impact of Snow

- Distinct warm and cold season states
- Snow cover is the <u>"climate switch"</u>
- **<u>Prairies:</u>** $\Delta T = -10^{\circ}C$ (winter albedo = 0.7)
- Vermont: $\Delta T = -6^{\circ}C$ (winter albedo 0.3 to 0.4)
 - VT Spring phenology change = 30 days
- Snow transforms BL-cloud coupling
 - No-snow 'Warm when clear' convective BL
 - Snow 'Cold when clear' stable BL

Papers at http://alanbetts.com

Warm Season Climate: T>0°C

- Hydrometeorology
 - with Precipitation and Radiation
 - <u>Diurnal cycle of T and RH</u>
 - Can't 'understand climate' with T & Precip.
- <u>Monthly/seasonal timescale: coupled</u>
 But T_x, T_m depend more on cloud/radiation
 - RH_x, RH_m, DTR depend more on precip.

Papers at http://alanbetts.com