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ABSTRACT 
 

Analysis of the unique hourly Canadian Prairie data for the past 60 years has transformed our 
quantitative understanding of land–atmosphere–cloud coupling at northern latitudes. The Canadian 
Prairie data is exceptional, because observers, typically at most major airports, were trained to 
estimate hourly the opaque cloud fraction in tenths, by cloud level and in total. These trained 
observersmade hourly estimates of the opaque cloud fraction that obscures the sun, moon, or stars, 
following the same protocol for 60 years at all stations. These 24 daily estimates of opaque cloud data 
are of sufficient quality that they can be calibrated against Baseline Surface Radiation Network data to 
yield the climatology of the daily short-wave, long-wave, and total cloud forcing (SWCF, LWCF and 
CF, respectively). This key cloud radiative forcing has not been available previously for surface 
climate datasets. Net cloud radiative forcing changes sign from negative in the warm season, to 
positive in the cold season, when reflective snow reduces the negative SWCF below the positive 
LWCF. This in turn leads to a large climate discontinuity with snow cover, with a systematic cooling of 
10°C or more with snow cover. In addition, snow cover transforms the coupling between cloud cover 
and the diurnal range of temperature. In the warm season, maximum temperature increases with 
decreasing cloud, while minimum temperature barely changes; while in the cold season with snow 
cover, maximum temperature decreases with decreasing cloud, and minimum temperature decreases 
even more. In the warm season, the diurnal ranges of temperature, relative humidity, equivalent 
potential temperature, and the pressure height of the lifting condensation level are all tightly coupled 
to the opaque cloud cover. Given over 600 station-years of hourly data, we are able to extract, 
perhaps for the first time, the coupling between the cloud forcing and the warm season imbalance of 
the diurnal cycle, which changes monotonically from a warming and drying under clear skies to a 
cooling and moistening under cloudy skies with precipitation. Because we have the daily cloud 
radiative forcing, which is large, we are able to show that the memory of water storage anomalies, 
from precipitation and the snowpack, goes back many months. The spring climatology shows the 
memory of snowfall back through the entire winter, and the memory in summer, goes back to the 
months of snowmelt. Lagged precipitation anomalies modify the thermodynamic coupling of the 
diurnal cycle to the cloud forcing, and shift the diurnal cycle of the mixing ratio, which has a double 
peak. The seasonal extraction of the surface total water storage is a large damping of the interannual 
variability of precipitation anomalies in the growing season. The large land-use change from summer 
fallow to intensive cropping, which peaked in the early 1990s, has led to a coupled climate response 
that has cooled and moistened the growing season, lowering cloud-base, increasing equivalent 
potential temperature, and increasing precipitation. We show a simplified energy balance of the 
Prairies during the growing season, and its dependence on reflective cloud.  
 
Keywords: Climate; land–atmosphere interaction; clouds; diurnal cycle; snow cover; Prairies; land-

use; hydrometeorology 
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1. INTRODUCTION 
 
Understanding land–atmosphere–climate coupling is challenging, because so many coupled 
processes are involved: soil temperature and moisture, vegetation types, properties and coverage, 
near-surface temperature and humidity, the atmospheric boundary layer, the shallow and deep cloud 
fields which determine the surface radiation balance and surface precipitation, and the soil hydraulic 
properties that determine the surface and deep runoff, to name only the local components. In the cold 
season, precipitation falls as snow, and the surface accumulation increases the albedo, and stores 
water until snowpack melt. 
 
The coupling between the energy and water cycles at the land surface is central to hydrometeorology, 
and important to weather forecasts on timescales from days to seasons. Earlier reviews [1,2] looked 
at hydrometeorology from the global modeling perspective using model reanalysis data, which 
showed how net long-wave and short-wave radiation, cloud cover, surface fluxes, diurnal temperature 
range, soil moisture, and cloud-base height were coupled on daily timescales over river basins [3]. On 
daily timescales, the land–atmosphere system is fully coupled, so that errors in the model 
representation of processes in the soil, vegetation, boundary layer, and cloud fields can rapidly bias a 
model forecast. Nonetheless, this model perspective was a strong motivation for our analyses of the 
Canadian Prairie data, and the search for a quantitative description of the fully coupled observed 
system. 
 
Historically, many climate and hydrometeorology studies have been largely based on precipitation, 
temperature, and humidity, for which long-term records are available [4–6]. However, the diurnal cycle 
is driven primarily by the surface radiation balance, which depends critically on the daily cloud fields, 
which are generally unknown in climate records, until satellite-based estimates became available. We 
cannot study the fully coupled nature of the land–atmosphere–climate system without the surface 
radiation budget. 
 
The Canadian Prairie data is, however, an exception, because observers, typically at most major 
airports, were trained to estimate hourly the opaque cloud fraction in tenths, by cloud level and in 
total. The definition of opaque cloud is “opaque to the sun, moon, or stars”; and this protocol has been 
followed by trained observers hourly for 60 years across the Prairies. With 24 observations per day 
(almost none are missing), we have representative estimates of the fraction of the daytime short-wave 
clear-sky (SWCS) flux reaching the surface, and the fraction of the sky that is opaque to outgoing 
long-wave (LW) radiation for over 600 station-years of data (roughly 240,000 days). Because there 
are 17 years of Baseline Surface Radiation Network (BSRN) data just 25 km south of Regina, SK, we 
were able to calibrate the opaque cloud data in terms of the LW and SW cloud forcing (Section 3.3). 
This is transformative, as it meant that we were able to determine quantitatively, we believe for the 
first time, the climate coupling between the cloud radiative forcing, and the diurnal and seasonal cycle, 
with and without snow cover. In addition, simply because we can separate the large radiative impact 
of clouds from the impact of precipitation, we can better quantify the hydrometeorological processes 
that couple the energy and water cycle, and observe the long-term memory of precipitation anomalies. 
In recent years, data from the Gravity Recovery and Climate Experiment (GRACE) [7,8] give 
estimates of the seasonal drawdown of total water storage. Canadian archives also record agricultural 
crops grown on the Prairies back to 1955, so we could assess the large climate impact of the shift 
away from summer fallowing to continuous cropping. 
 
We will not include a conventional review of the literature on land–atmosphere–climate coupling. This 
regional hourly surface data set for 60-years with a coupled estimate of the cloud radiative forcing is 
unique, and there are no comparable data-based studies elsewhere. This paper is a synthesis of our 
key conclusions from a series of Prairie data analysis papers [9–16]. Readers interested in more 
details, or in the evolution of our thinking, can refer back to these original papers. It is remarkable that 
the long-term Prairie climate dataset, with better cloud observations, have taken our understanding of 
land–atmosphere–climate coupling to a new level. In retrospect, much of our analysis could have 
been done two decades ago, but the data was not widely accessible and the issues were not 
understood. 
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Section 2 discusses the Prairie data and our analysis methods. Section 3 outlines how the climate is 
coupled to opaque cloud and snow cover on daily timescales, and shows the difference in cloud 
forcing between warm and cold season with snow. Section 4 looks at the long-term memory of 
precipitation anomalies, both using multiple regression for the cold and warm season memory, and 
the dependence of the diurnal coupling on opaque cloud and precipitation anomalies. Section 5 looks 
at how the seasonal extraction of the surface total water storage dampens the interannual variability 
of precipitation anomalies in the growing season, and how the large land-use change from summer 
fallowing to intensive cropping has led to a coupled climate response. Finally, we return to reanalysis 
data to show how the growing season surface and top-of-atmosphere (TOA) budgets change with 
cloud cover. Section 6 summarizes our conclusions. 
 

2. METHODS 
 

2.1 Prairie Station Locations 
 
Fig. 1 shows the location of the 15 Prairie stations used in our analyses. Most of the stations are in 
the agricultural region, except The Pas. Table 1 lists the station locations and elevation, and the two 
letter code is used to identify stations in the figures and text. These have an hourly pressure, 
temperature, relative humidity, wind speed and direction, opaque cloud, and derived radiation, starting 
in 1953, for all stations, except RG, and MJ, which start in 1954, and ED, which starts in 1961. We 
accessed the data through June 2011. The hours of missing data are remarkably small. For key 
stations, such as Calgary, Regina and Winnipeg, more than 99.9% of the days have no missing hours 
in the first 40 years. In more recent years since 1994, the number of days with less than 23 hr of data 
is typically less than 1%. A few stations (PS in 1992; MJ in 1998; LE and MH in 2006) shifted to 
daytime-only observation in recent years, because of reduced staffing. The stations also have daily 
precipitation and snow depth (except for PS), although the last year with complete precipitation data 
was 1994 for SW, 2005 for LE and MH, 2007 for WI, 2008 for RG, and 2009 for SK. The snow depth 
data begins in 1955, and ends in 1994 for SW, 1997 for MJ, 2002 for LE, 2003 for WI, 2005 for RG 
and SK, 2006 for ES, GP, MH, PA, RD, RG, and TP, and 2010 for ED. This synthesis paper extracts 
significant results from many analyses [9–16], which use different subsets of the data, ranging from all 
station-years with snow depth (e.g., Section 3.1) to selected representative stations, which we will 
identify in the text. 
 

 
 

Fig. 1. Climate station locations, Canadian ecozones, regional zones, agricultural regions, and 
boreal forest (adapted from [14]) 
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Table 1. Climate stations with locations and elevation 
 

Station name (Code) Station ID Province Latitude Longitude Elevation (m) 

Red Deer (RD) 3025480 Alberta 52.18 −113.62 905 
Calgary (CA) 3031093 Alberta 51.11 −114.02 1084 
Edmonton (ED) 3012202 Alberta 53.57 −113.52 671 
Lethbridge (LE) 3033880 Alberta 49.63 −112.80 929 
Medicine Hat (MH) 3034480 Alberta 50.02 −110.72 717 
Grande Prairie (GP) 3072920 Alberta 55.18 −118.89 669 
Regina (RG) 4016560 Saskatchewan 50.43 −104.67 578 
Moose Jaw (MJ) 4015320 Saskatchewan 50.33 −105.55 577 
Estevan (ES) 4012400 Saskatchewan 49.22 −102.97 581 
Swift Current (SW) 4028040 Saskatchewan 50.3 −107.68 817 
Prince Albert (PA) 4056240 Saskatchewan 53.22 −105.67 428 
Saskatoon (SK) 4057120 Saskatchewan 52.17 −106.72 504 
Portage-Southport (PS) 5012320 Manitoba 49.9 −98.27 270 
Winnipeg (WI) 5023222 Manitoba 49.82 −97.23 239 
The Pas (TP) 5052880 Manitoba 53.97 −101.1 270 

 

2.2 Diurnal Range Definition 
 
The diurnal range of temperature, DTR, is defined as the difference between the maximum 
temperature, Tx, and the minimum temperature, Tn: 
 

DTR = Tx − Tn (1a) 

 
Similarly for relative humidity, RH, (and other variables), we define the diurnal range, DRH, as the 
difference between the maximum, RHx, and the minimum, RHn: 
 

DRH = RHx − RHn (1b) 

 
In our early papers [9–13] we generally reduced the hourly data to daily means, Tm, RHm, and 
recorded Tx, Tn, and DTR. The difference in relative humidity (RH), DRH, between Tn and Tx was used 
as an approximation of the diurnal range. However, there has been considerable discussion in recent 
years about the difference between DTR, Tx, and Tn derived from the monthly means of hourly data, 
and the conventional monthly mean of daily values of DTR, Tx, and Tn [12,17–19]. 
 
We explored this issue [14], using stratifications by month and by opaque cloud cover, and found 
systematic biases, especially in winter, and even in summer under cloudy conditions. We concluded 
that the radiatively-forced diurnal cycle, that is, the lagged response to the diurnally varying radiation 
field, which is dependent on opaque cloud cover, is represented best by first binning the hourly data 
for groups of many days, and then by determining the diurnal ranges from the composites. 
Specifically, we found that this radiatively-forced diurnal cycle has a smaller amplitude than the 
corresponding average of the daily ranges. The reason is transparent. Without an advection of 
temperature, Tn is near sunrise and Tx is in the mid-afternoon, but advection can shift the daily 
minimum temperature away from the time of sunrise to a lower value than the temperature at sunrise, 
and similarly, advection can shift the daily maximum temperature away from the mid-afternoon to a 
higher value than the mid-afternoon temperature. Either will give a larger diurnal range. 
 
Our dataset has around 240,000 days, so coarse stratifications may have 2000 days in each bin, and 
detailed sub-stratifications typically have >200 days in each bin. This means that the radiatively-forced 
diurnal cycle emerges from composites of the hourly data, since the advection of temperature and 
humidity varies from day to day. This leads to a fundamental quantitative improvement in our 
understanding of the coupling between the diurnal cycle and the opaque cloud cover that determines 
the cloud radiative forcing. 
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We also derived from T, RH, and surface pressure, PS, the other thermodynamic variables: the 
mixing ratio (Q), the potential temperature (θ), the equivalent potential temperature (θE), and the 
saturation pressure (p*) at the lifting condensation level (LCL). We defined the pressure height to the 
LCL, PLCL = PS − p* [2], which in the warm season, is often an indicator of the height of cloud base [9]. 
We calculated the diurnal ranges that are related to moist convective processes: 
 

DθE = θEx − θEn 

 
(2a) 
 

DPLCL = PLCLx − PLCLn (2b) 

 

2.3 Opaque Cloud Bins 
 
Since opaque cloud reflects the solar flux and traps the outgoing long-wave, we used the daily mean 
of the hourly opaque cloud measurements to stratify the daily mean data, and the diurnal ranges of 
temperature and humidity and derived variables (see Section 3). In fact, we computed two daily 
averages from the all-sky opaque cloud cover estimates to use for stratification. The first is the simple 
mean of the 24 hourly values, OPAQm. The second, OPAQSW, is a mean of the hourly opaque cloud 
values during daylight hours, weighted by a fit to the downward clear sky flux derived from the 
reanalysis known as ERA-Interim (details in [13]). 
 

2.4 Cloud Radiative Forcing 
 
In the short-wave radiation budget, we can define an effective cloud albedo (ECA) and the short-wave 
cloud forcing (SWCF) in terms of a downwelling SW clear-sky flux, SWCSdn, based on a fit to the 
clear-sky fluxes from the nearest grid-point of the reanalysis ERA-Interim [13,20]: 
 

ECA = 1 − SWdn/SWCSdn 

 
(3) 
 

SWCF = SWCSdn − SWdn = −ECA * SWCSdn 
(4) 
 

The dimensionless ECA, with a range from 0 to 1, is a useful measure of the impact of the reflective 
cloud field on the surface shortwave radiation budget [2,3]. SWCF becomes increasingly negative as 
ECA increases, while SWCSdn has a large increase from the winter to the summer solstice. 
 
Similarly, we can define a long-wave cloud forcing (LWCF) in terms of a downwelling clear-sky flux 
LWCSdn, also from ERA-Interim, as: 
 

LWCF = LWdn − LWCSdn (5) 

 
LWCSdn is the smaller term, and LWdn increases with increasing cloud cover, so that LWCF is 
positive. 
 
The total cloud forcing (CF) of the downwelling radiative fluxes is the sum: 
 

CF = SWCF + LWCF (6a) 

 
In the warm season, the SWCF dominates, and CF is negative. The net cloud forcing can be defined 
as: 
 

CFnet = (1 − αs) SWCF + LWCF (6b) 

 
where the mean surface albedo, defined as: 
 

αs = SWdn/SWup (7) 
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Ranges for Saskatchewan from about 0.18 in summer to 0.73 in winter with snow cover [11,12]. When 
there is a snow cover, the positive LWCF dominates, because the lower solar elevation and larger 
surface albedo greatly reduce the net SWCF. 
 
We computed the net LW flux: 
 

LWn = LWdn − LWup (8) 

 
using observations for LWdn, and estimating LWup from the daily mean air temperature, Tm (°C), from: 
 

LWup = ε σ Tk
4 (9) 

 
with Tk (K) = Tm + 273.15, σ = 5.67 × 10−8 (W m−2 K−4) and the emissivity ε set to 1. 
 

3. CLIMATE COUPLING TO OPAQUE CLOUD AND SNOW COVER 
 
This section will present several topics: the monthly diurnal cycle with and without snow cover, the 
relationship between snow cover, opaque cloud, and cloud radiative forcing, the climate impact of 
snow cover, the coupling between opaque cloud and warm season diurnal thermodynamic ranges, 
and the dependence of the 24 hr imbalances of the diurnal cycle on opaque cloud cover. 
 

3.1 Forcing of Diurnal Cycle by Cloud and Snow Cover 
 
We start with the dependence of the monthly diurnal cycle of temperature on cloud and snow cover 
[14]. Taking the data from all stations-years in Table 1 that have snow depth data, we first stratified by 
temperature and snow cover: selecting the warm group of days with Tm > 0 °C and no snow cover 
(141,160 days), and the cold group of days with Tm < 0°C with surface snow cover (74,260 days). 
Here, we exclude the much smaller mixed group of days, above freezing with snow cover and below 
freezing without snow (see [14]). 
 
Fig. 2 shows the mean diurnal cycle of temperature by month, stratified into 10 bins of daily mean 
opaque cloud, OPAQm. In the warm season from May to October, we see a steep increase of 
maximum temperature Tx and diurnal temperature range DTR with decreasing opaque cloud, and a 
rather small fall of minimum temperature in summer. The changing day-length is clearly visible by 
September and October. In sharp contrast, in the cold season with snow, from December to February, 
Tx decreases with decreasing opaque cloud, and Tn decreases even more steeply to its lowest 
minimum at sunrise under clear skies. Beside the September and December plots, we show OPAQm 
legends in ascending and descending order to illustrate this reversal of the diurnal cycle coupling to 
opaque cloud between warm and cold seasons. 
 
For the transition months, November, March, and April between warm and cold seasons, both 
regimes with and without snow cover are well-represented; it is clear that the distributions are non-
overlapping. Note that the temperature range shown for the transition months is broader (32 K) than 
for the single months with a single regime (21 K). This is a large dataset with about 20,000 days per 
month, so that each cloud bin has typically about 2000 days in summer and winter. For the transition 
months, where the data is also split unevenly, the number in each bin varies from about 200 to 1500. 
It is clear that snow cover has two large climate impacts. First, it cools the mean climate, represented 
by Tm, by about 10 °C; and second, it reverses the sign of the coupling to opaque cloud cover. Snow 
cover acts as a climate switch between non-overlapping regimes [11,14]. We will explore the climate 
impact of snow cover further in Section 3.4, but first we will show the seasonal impact on the cloud 
radiative forcing. 
 

3.2 Change of Cloud Forcing between Warm and Cold Season 
 

The dramatic differences in the diurnal cycles of temperature shown in Fig. 2 are related to the 
reversal of the sign of the net cloud forcing between the warm season and the cold season with snow 
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cover. We computed this using Equations (3) to (7), and data from the Baseline Surface Radiation 
Network (BSRN) Prairie site at Bratt’s Lake, Saskatchewan at 50.204° N, 104.713° W, elevation 588 
m [13]. We have 17 years of the downwelling fluxes, SWdn and LWdn, at Bratt’s Lake, which we first 
averaged from 1-min data to hourly means, and then to daily means. 
 
Fig. 3 shows that CFnet from Equation (6b) reverses the sign from increasing negative with cloud 
cover in the warm season, to increasing positive in the cold season with cloud cover. This is 
consistent with the daily mean temperature response seen in Fig. 2 to the changing opaque cloud 
cover. 
 

 
 
Fig. 2. Monthly diurnal cycles for cold-snow and warm-no-snow classes, stratified by opaque 

cloud (adapted from [14]) 
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Fig. 3. Mean annual cycle of CFnet, stratified by effective cloud albedo (ECA) (adapted from 
[13]) 

 

3.3 Relationship between Opaque Cloud and Cloud Radiative Forcing 
 
We then binned the BSRN data from Bratt’s Lake for the downward SW and LW fluxes using the 
opaque cloud measurements at Regina, 25 km to the north, simply defining the warm season as days 
with Tm > 0°C and the cold season as days with Tm < 0°C , because we have no snow cover data for 
Bratt’s Lake. For the SW comparison, we compared the daytime weighted opaque cloud, OPAQSW 
(see Section 2.3) with ECA from Equation (3). For the LW comparison, we compared the 24 hr mean 
OPAQm with LWn computed from Equation (8). 
 
Fig. 4 (left) shows the relationship between ECA and OPAQSW for the warm season above freezing, 
and the cold season below freezing. ECA increases more steeply with increasing opaque cloud in the 
warm season than in the cold season. We show the mean and standard error of the binned data, and 
quadratic regression fits to the daily data, which could be used to convert opaque cloud to ECA. For 
the warm season, the fit is (R2 = 0.87): 
 

ECA = 0.06(±0.08) + 0.02(±0.02) OPAQSW + 0.65(±0.02) OPAQSW2 (10a) 

 
For the cold season, the fit is (R2 = 0.71): 
 

ECA = 0.07(±0.11) + 0.08(±0.03) OPAQSW + 0.37(±0.03) OPAQSW2 (10b) 

 
The uncertainty in ECA on a daily basis is of the order of ±0.08 in the warm season and ±0.11 in the 
cold season. The standard errors (SE) shown for the climatological fits are much smaller, because 
they are reduced by the large number of days. 
 
Fig. 4 (middle) shows the dependence of LWn on opaque cloud for days above freezing (3245 days) 
for three bins of daily mean RHm (<60, 60–75, >75%). The outgoing LWn flux for the same cloud cover 
increases as RH falls. The temperature dependence is very small when Tm > 0°C (not shown). The 
right panel shows the dependence of LWn on opaque cloud for temperatures below freezing (2198 
days) for three bins of daily mean Tm (<−20, −20 to −10, −10 to 0 °C). The outgoing LWn flux now 
decreases with colder temperatures, probably because the surface cools under a stable BL in the cold 
season [13]. 
 
In the warm season, multiple regression of the daily values of LWn on quadratic opaque cloud and 
RHm gives (R2 = 0.91): 
 

LWn = −128.6(±7.8) + 28.1(±1.8)OPAQm + 44.6(±1.8)OPAQm
2 + 0.49(±0.01)RHm (11a) 
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In the cold season, multiple regression on quadratic opaque cloud, Tm and RHm gives (R2 = 0.83): 
 

LWn = −112.2(±9.8) + 43.5(±2.8)OPAQm + 26.8(±2.5)OPAQm
2 +  

0.29(±0.02)RHm − 1.02(±0.03)Tm 
(11b) 

 

 
 

Fig. 4. Relationship between opaque cloud at Regina and Bratt’s Lake ECA (left), opaque 
cloud, and LWn stratified by RHm in the warm season (middle), and (right) LWn stratified by Tm 

in the cold season (adapted from [13]) 
 

3.4 Climate Impact of Snow Cover 
 
Fig. 2 shows that the impact of snow cover on the Prairies on the diurnal cycle of temperature is very 
large. The transition months show that the cooling with snow cover is large, and show a reversal of 
the response to cloud cover, consistent with the reversal of the net cloud forcing between cold and 
warm seasons shown in Fig. 3. This section addresses the resulting mean climate impact of snow 
cover. 
 
Fig. 5 shows four different analyses of the climate impact of snow cover. The top-left is a composite of 
the six climate stations in Saskatchewan for eight days before and after fresh snowfall in November, 
showing a mean of about 270 snowfall events, with a mean date of November 15 (adapted from [11]). 
We see the fall of daily mean temperature across the snow event, from near 0°C a week before, to 
−9.4 ± 0.7°C for days 2 to 8 afterwards. The climate transition from fall to winter often comes abruptly 
with these snow events [11], as the snowpack may not melt till spring. Similar composites for 
individual stations and the means for other provinces are shown in [11]. All of these suggest that as 
the albedo of the Prairies changes from about 0.2 with no snow cover to above 0.7 with snow cover 
[11,12], there is a fall of temperature of nearly 10°C, and the reverse change occurs in spring with 
snow melt (see [11]). 
 
The top-right (adapted from [14]) shows the fall of mean daily temperature, δTm, with snow cover, 
derived from Fig. 2 by calculating the difference of the diurnal composites with and without snow for 
the transition months, November and March, for each opaque cloud cover bin. We made a correction 
of about 2°C, based on the mean seasonal cycle [14], to allow for the fact that the mean date of the 
snow-free composite is about 15 days earlier in November, and later in March than the composite with 
snow. The curves are a little noisy, because the independent sampling in opaque cloud bins, with and 
without snow, is far from homogeneous, and in these transition months, the number of days in each 
bin ranges widely from 184 to 1869 (not shown). Nonetheless, we see a larger degree of cooling as 
the opaque cloud decreases. The climate cooling with snow, averaged across all cloud bins (open 
circles), is −11.8°C (−10.7°C) for November (March). We also show quadratic fits (dashed) as a useful 
smooth reference for the impact of cloud cover. We note that the radiative forcing is stronger in March 
than November, but we cannot assess whether the small difference between the November and 
March curves is significant, given the inhomogeneity across the cloud bins. 
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The bottom-left plot shows the monthly mean temperature across the cold season (black line) and the 
partition into days with snow cover (blue) and days with no snow cover (red line) for a single station 
(Lethbridge, Alberta), together with the mean snow depth. The difference between the blue and red 
curves (the magenta curve) shows the monthly climate cooling of snow cover with a mean value of ΔT 
= −10.4 ± 0.4°C. The standard errors shown are small because of the large number of days in the 49-
year record. Other stations show similar plots [15], suggesting that the cold season climatology with 
and without snow (red and blue curves) are distinct and non-overlapping. Conventionally, they are 
merged to the black curve, so this can be misleading. 
 
The bottom-right panel shows the mean temperature TM, for October to April against the fraction of 
days with snow cover (FDS) for five stations in Alberta, Lethbridge, Medicine Hat, Calgary, Red Deer, 
and Grande Prairie, listed in order of increasing latitude (adapted from [11,15]). The line fit shown is 
for 326 years of data, and we show the station means (black circles) that lie close to this line fit. Since 
it is clear that the southern three stations (red points) have warmer temperatures and lower FDS than 
the northern two stations, we also computed the linear regression slopes for these two groups. 
 

All station fit  TM = 3.9(±1.2) − 14.6(±0.5) * FDS  (R2 = 0.79) 
 

(12a) 
 

3 southern station fit  TM = 3.8(±1.5) − 14.3(±0.7) * FDS  (R2 = 0.73) 
 

(12b) 
 

2 northern station fit  TM = 3.2(±1.5) − 13.6(±1.5) * FDS  (R2 = 0.48) (12c) 
 
These agree within the uncertainty, which increases for fewer stations. The corresponding plot for 
Saskatchewan is similar [11]. We conclude that the climate coupling between the fraction of days with 
snow cover and the mean cool season temperature is a robust feature of the Prairie landscape. The 
shift of the station means with increasing latitude suggests that reduced insolation is also playing a 
tightly coupled role. 
 
Fig. 5 confirms that snow cover has a large cooling impact on the mean temperatures in the cold 
season: snow cover acts as a climate switch between the two non-overlapping regimes. On daily 
timescales, the cooling is about −10°C for the Prairies, where the surface albedo with snow cover is in 
the order of 0.7. The larger slope of −14.6°C in fit (12a) for the change of mean cold season 
temperature with the fraction of days with snow cover suggests that there may be coupling to larger 
scales that enhance the regional cooling with snow cover. 
 

3.5 Coupling of Warm Season Diurnal Ranges and 24-h Imbalances to Opaque Cloud 
 
This very large hourly dataset allowed us for the first time to extract the radiatively forced diurnal 
ranges, shown in Equations (1) and (2), for the key thermodynamic variables [14]. Here, we will just 
show the warm season; the cold season can be found in [14]. From Fig. 2, we extracted DTR as a 
function of opaque cloud and month, and we extracted DRH, DθE, and DPLCL from similar diurnal 
composites (not shown). Close examination of Fig. 2 shows that there is a discontinuity across local 
midnight that changes with opaque cloud cover. So we calculated, also for the first time, this 24 hr 
imbalance of the diurnal cycle as a function of opaque cloud and month. These are key conceptual 
improvements in our understanding of the diurnal cycle over land in the warm season, and our results 
are robust as there are about 20,000 days per month. 
 
Fig. 6 (top left panel) shows the mean diurnal ranges of temperature, DTR, relative humidity, DRH, 
and mean daily precipitation for the warm season months April to September with no snow. 
Remarkably, the diurnal ranges are tightly clustered [9,14], so we also show the 6-month warm 
season mean. The quadratic regression fits for the dependence of the 6-month mean DTR and DRH 
on OPAQm are: 
 

DTR = 16.7(±0.4) − 9.3(±0.8) * OPAQm − 6.0(±0.7) * OPAQm
2  (R2 = 0.992) 

 
(13a) 
 

DRH = 47.5(±0.8) − 2.6(±1.4) * OPAQm − 38.9(±1.4) * OPAQm
2  (R2 = 0.996) (13b) 
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Fig. 5. Drop of temperature with fresh snowfall (top-left), climate cooling with snow cover in 
November and March as a function of opaque cloud (top-right), 10°C separation of cold season 

climates with and without snow cover (bottom-left), and (bottom-right) dependence of mean 
cold season temperature on fraction of days with snow cover (adapted from [11,14.15] 

 
The leading coefficient is the clear-sky diurnal range, which is a rise of 16.7°C to the afternoon 
maximum, coupled to a fall of 47.5% in RH from the morning maximum at sunrise. The cloudy limit for 
OPAQm = 1, given by these fits, are the small values (DTR, DRH) = (1.4°C, 6.0%). 
 
Monthly mean precipitation is very low for OPAQm < 0.4, and the increase of precipitation with OPAQm 
is largest in summer, peaking in July when T and the mixing ratio Q also peak. However, because 
June has substantially greater opaque cloud cover [12], mean June precipitation (2.28 mm d−1) is 
greater than July (1.91 mm d−1). 
 
Fig. 6 (top right) shows the 24 hr imbalances of ΔT24 and ΔRH24, which we calculated from the 
discontinuities across local midnight [14]. We see that over the range of OPAQm from 0.05 to 0.95 
(nearly clear to nearly opaque cloud cover), the mean (ΔT24, ΔRH24) change monotonically from (+2 
°C, −6%) to (−1.5 °C, +6%). Under nearly clear skies, the warming, and drying over the diurnal cycle 
is slightly larger in April, May, and June when the mean temperature is increasing seasonally, and 
slightly smaller in August and September. Under cloudy skies, there is a larger increase in ΔRH24 in 
April and May. The SE of the hourly binned data from which Fig. 6 is derived as ≈0.1 K for T, ≤0.5% 
for RH. 
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Fig. 6. The opaque cloud dependence of the diurnal ranges of T, RH, θE, and PLCL (left) and 
(right) the 24 hr imbalance of the diurnal cycle (adapted from [14]) 

 
The warming of +2 °C and a drying of −6% over the diurnal cycle under nearly clear skies is about 
12% of both the DTR and DRH. The cooling of −1.5 °C and a moistening of +6% under very cloudy 
skies may be coupled to both the evaporation of rain and downdraft transports. The uniform 
progression of the diurnal imbalance with increasing cloud is not surprising. However, this means that 
a steady state diurnal cycle only exists under partly cloudy conditions: for the 6-month mean, ΔT24, 
and ΔRH24 cross zero for OPAQm = 0.45. This presents a conceptual challenge for equilibrium models 
for the non-precipitating convective BL over land [21]. 
 
Fig. 6 (lower panels) are the corresponding warm season diurnal ranges and 24 hr imbalances for θE 

and PLCL. The spread in the diurnal ranges and the diurnal imbalances is again small from April to 
September. For the 6-month means, the quadratic regression fits for the OPAQm dependence are: 
 

DθE = 19.7(±0.7) − 9.4(±1.2) * OPAQm − 7.5(±1.2) * OPAQm
2  (R2 = 0.983) 

 
(14a) 
 

DPLCL = 181.4(±4.9) − 90.3(±9.0) * OPAQm − 81.1(±8.7) * OPAQm
2 (R2 = 0.991) (14b) 

 
Again, the leading coefficient is the clear-sky diurnal range, which is a rise of (θE, PLCL) = (19.7 K, 
181.4 hPa) from the morning sunrise minimums. The cloudy limit for OPAQm = 1, given by these fits, 
are the small values (DθE, DPLCL) = (2.73 K, 10.0 hPa). 
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The bottom-right panel for the corresponding monthly mean 24 hr imbalances shows that under 
nearly-clear skies, there is an increase of +2.9 K for ΔθE24 and +18.6 hPa for ΔPLCL24, which are 14.9% 
and 10.5% of the respective diurnal ranges. There is a corresponding small 24 hr imbalance of mixing 
ratio, ΔQ24, of +0.2 gkg−1 (not shown). At the other limit under nearly-overcast skies, typically with rain, 
the 24 hr imbalance is a fall of −2.6 K for ΔθE24 and −14.6 hPa for ΔPLCL24, with a corresponding fall of 
ΔQ24 of −0.24 gkg−1 (not shown). The SE of the hourly binned data from which these plots are derived 
is ≤0.3 K for θE and ≤1.5 hPa for PLCL. On the seasonal timescale, we see that the imbalance of ΔθE24 
is larger in April, May, and June over most of the OPAQm range as the climate warms, and smaller in 
August and September. However for ΔPLCL24, the seasonal response has an asymmetric structure that 
is consistent with ΔRH24, since a lower RH is tightly coupled to a higher PLCL.  
 
Fig. 6 shows the remarkably tight climatological coupling from April to September which links opaque 
cloud cover, the diurnal ranges and the 24 hr diurnal imbalances, despite substantial differences in 
the solar zenith angle. Over the diurnal cycle, under nearly clear skies, we see a warming and drying, 
and a rise of θE and PLCL. At the cloudy extreme with rain, we see 24 hr imbalances of opposite sign 
that are generally slightly smaller. These rather precise warm-season patterns across opaque cloud 
cover, and therefore cloud radiative forcing, set a clear target for modeling the partially cloudy 
boundary layer over land. 
 

4. HYDROMETEOROLOGICAL MEMORY ON MONTHLY TIMESCALES 
 
The close coupling between the energy and water cycles at the land surface is central to 
hydrometeorology, and important to weather forecasts on timescales from days to seasons. An earlier 
review looked at hydrometeorology using global model reanalysis data [1], which showed how net 
long-wave and short-wave radiation, cloud cover, surface fluxes, diurnal temperature range, soil 
moisture, and cloud-base height were coupled on daily timescales over river basins. Reanalysis data 
contain all the key variables, but historically, the observed near-surface climate variables were 
temperature and precipitation, along with pressure, wind, relative humidity, and snow-depth. Section 
3.5 shows that the warm season diurnal cycle is dominated by the radiative forcing of the opaque 
cloud cover. But on monthly and longer timescales, soil moisture anomalies are linked to precipitation 
anomalies, both for the current month and several preceding months. 
 
Here, we summarize some key results from [16], who merged the 12 stations in Table 1 in Alberta and 
Saskatchewan for the years when precipitation is available. For this monthly analysis, the hourly data 
were processed as intact monthly mean diurnal cycles for each station for each year. As noted in 
Section 2.1, the hourly dataset is remarkably complete. Days were omitted if <20 hr of data were 
available. Months were omitted if they had fewer than 28 days remaining, except for February, where 
this threshold was reduced to 25 days. From the monthly diurnal cycles of T, RH, and PS, we 
computed the derived thermodynamic variables, Q, θE, and PLCL, and the diurnal ranges defined in 
Equations (1) and (2). 
 
For each variable, Y, we extracted from the monthly mean diurnal cycles, the daily mean, Ym, the 
maximum and minimum, Yx and Yn, and the times of the maximum and minimum [16]. We then 
computed the long-term station monthly mean, and used these to compute monthly anomalies, δY. 
For the daily precipitation and snow-depth, we also computed monthly means, the long-term station 
monthly means, and used these to compute monthly anomalies for each station. The monthly 
anomalies of opaque cloud, precipitation, snow depth, and snow cover frequency were then 
standardized by their monthly standard deviation (SD). For the temperature anomalies, δTm, δTx, δTn, 
and the diurnal temperature range, δDTR, we standardized by the monthly SD of δTm. Similarly for the 
variables, δRHm, δRHx, δRHn and the diurnal RH range δDRH, we standardized by the monthly SD of 
δRHm. The corresponding set of anomalies for equivalent potential temperature, δθE, and pressure–
height to the LCL, δPLCL, were standardized by the monthly SD of δθEm, and δPLCLm respectively. 
 
We used multiple linear regression to explore the correlation between variables. Following [12,16], our 
starting format was to regress a standardized thermodynamic anomaly, δY, on opaque cloud 
anomalies (δOPAQm) for the current month, and lagged precipitation anomalies for the current month 
(δPR0) and preceding months (δPR1, δPR2, δPR3, δPR4, δPR5) in the form: 
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δY = A * δOPAQ + B * δPR0 + C * δPR1 + D * δPR2 + E * δPR3 + F * δPR4 + G * δPR5 (15) 
 
Multiple regression shows no memory of cloud for previous months. Since we are using anomalies, 
the leading coefficient is of order zero, so it is not shown. After standardization, all variables are 
dimensionless. 
 

4.1 Memory of Cold Season Precipitation in April Climatology 
 
On the Prairies, precipitation memory lasts through winter, as water is stored until the snowpack melts 
in late March or April. The reflective snow cover on the Prairies, with an albedo ≈0.7, acts as a climate 
switch that reduces Tm by 10°C (Figs. 2 and 5). April is the month when the snowpack finally melts 
and the ground thaws. The upper group in Table 2 shows selected April standardized anomalies 
regressed on standardized anomalies of opaque cloud for April; and precipitation from April back to 
November (coefficients A to G in Equation (15)). We see that the April monthly anomalies show 
memories of the anomalies of precipitation 5 months back through the entire cold season to 
November, when typically the ground begins to freeze, and the first lasting snow occurs (Fig. 5). 
Some of this memory remains in the March snowpack depth (not shown here, see [16]). 
 
For the first row, δOPAQ-Apr, the large negative coefficients for the monthly anomalies δDTR, δTx, 
and δPLCLx, mean that these variables decrease with increasing opaque cloud cover, while the 
positive sign for the δRHn and δRHm means that they increase with opaque cloud. For δTx and δDTR 
(and δTm, not shown), the negative coefficients B to G, for the months March back to November, 
mean that the positive cold season precipitation anomalies are correlated with cold April 
temperatures. For δRHn, δRHm (and δRHx, not shown), the positive coefficients, B to G, mean that 
positive cold season precipitation anomalies are correlated with higher RH in April. Most coefficients 
for δDTR, δRHn, δRHm, and δPLCLx (representative of afternoon cloud-base) have a 99% confidence 
(p < 0.01). 
There are several physical processes that are probably involved. The precipitation over the cold 
season is mostly stored in the snowpack till spring, when the melt absorbs energy and cools the 
surface; the melt also provides water for evaporation, which also cools and increases RH. In addition, 
the freeze-up of the soil in November may similarly preserve November precipitation anomalies as soil 
ice through the cold season until spring melt. 
 
In April, the high albedo of the remaining snowpack, as well as fresh snow, also play a direct climate 
role, as discussed in Section 3.4 and shown in Fig. 2, because snow cover acts as a climate switch. 
Thus, we computed the standardized April snow cover frequency anomaly from the fraction of days in 
April with snow depth >0, and added this to the multiple regression (15) to give: 
 

δY-Apr = A * δOPAQm-Apr + B * δPR-Apr + C * δPR-Mar + D * δPR-Feb +  
E * δPR-Jan + F * δPR-Dec + G * δPR-Nov + S * δSnowCover-Apr 

(16) 

 
The lower group in Table 2 shows the coefficients from Equation (16). There is an increase in R2 for 
all variables, and especially for Tx, with the addition of snow cover. For maximum temperature, Tx, 
snow cover frequency anomalies have as large an impact as opaque cloud anomalies. Note that the 
coefficients G for δPR-Nov for δRHn, δRHm, and δPLCLx are not significant, but the coefficients G for 
δDTR and δTx have a confidence >99% in Table 2. It is possible that this is the cooling impact in April 
coming from the melt of soil–ice that was frozen back in November. 
 
Table 2 shows that the climate in April, when the snow pack finally melts, has memory of precipitation 
through the entire previous winter up to November. Most of the variability in the April climate is 
explained by anomalies of winter precipitation and the fraction of days in April with residual snow 
cover. 
 

4.2 Growing Season Memory of Precipitation 
 

After snowmelt on the Prairies, the transition into the growing season months May to August (MJJA) is 
rapid, and typically, the memory of precipitation for the months May to August only goes back to 
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March or April [16]. Merging the 2466 MJJA growing season months gives a unified description for the 
growing season correlation of the thermodynamic anomalies with opaque cloud and lagged 
precipitation, as shown in Table 3 and adapted from [16]. We retain the precipitation anomalies for 
four months. 
 
Table 2. Standardized regression coefficients for April anomalies in anomalies δDTR (diurnal 

range of temperature), δTx, δRHn, δRHm, and δPLCLx on standardized anomalies of opaque 
cloud and precipitation (upper group); and (lower group) adding fraction of April days with 

snow cover. For coefficients: plain text represents p < 0.01 (>99%); italic represents 0.01 ≤ p < 
0.05, and coefficients are omitted for p > 0.05 

 

 Variable 
620 months R2 

δDTR 
0.67 

δTx 
0.47 

δRHn 
0.65 

δRHm 
0.63 

δPLCLx 
0.66 

δOPAQm-Apr (A) −0.52 ± 0.02 −0.78 ± 0.04 0.76 ± 0.03 0.60 ± 0.03 −0.93 ± 0.04 
δPR-Apr (B) −0.06 ± 0.02  0.20 ± 0.03 0.17 ± 0.03 −0.19 ± 0.04 
δPR-Mar (C) −0.12 ± 0.02 −0.22 ± 0.04 0.23 ± 0.03 0.19 ± 0.02 −0.27 ± 0.03 
δPR-Feb (D) −0.07 ± 0.02 −0.12 ± 0.04 0.16 ± 0.03 0.13 ± 0.02 −0.19 ± 0.03 
δPR-Jan (E) −0.09 ± 0.02 −0.19 ± 0.04 0.17 ± 0.03 0.13 ± 0.02 −0.21 ± 0.03 
δPR-Dec (F) −0.06 ± 0.02  0.16 ± 0.03 0.14 ± 0.02 −0.19 ± 0.03 
δPR-Nov (G) −0.08 ± 0.02 −0.13 ± 0.04 0.07 ± 0.03 0.08 ± 0.02 −0.11 ± 0.03 

 Variable 
550 months R2 

δDTR 
0.73 

δTx 
0.65 

δRHn 
0.80 

δRHm 
0.70 

δPLCLx 
0.78 

δOPAQm-Apr (A) −0.49 ± 0.02 −0.57 ± 0.04 0.65 ± 0.03 0.54 ± 0.03 −0.82 ± 0.04 
δPR-Apr (B) −0.04 ± 0.02  0.16 ± 0.03 0.15 ± 0.03 −0.15 ± 0.04 
δPR-Mar (C) −0.08 ± 0.02 −0.07 ± 0.03 0.14 ± 0.03 0.14 ± 0.03 −0.18 ± 0.03 
δPR-Feb (D) −0.05 ± 0.02  0.09 ± 0.03 0.10 ± 0.03 −0.11 ± 0.03 
δPR-Jan (E) −0.05 ± 0.02  0.06 ± 0.03 0.07 ± 0.03 −0.08 ± 0.03 
δPR-Dec (F) −0.04 ± 0.02  0.12 ± 0.02 0.13 ± 0.02 −0.16 ± 0.03 
δPR-Nov (G) −0.06 ± 0.02 −0.10 ± 0.03    
δSnowCover-Apr (S) −0.19 ± 0.02 −0.63 ± 0.04 0.52 ± 0.03 0.31 ± 0.03 −0.57 ± 0.03 

 
Table 3 shows that only some anomalies, such as δDTR, δRHn, δRHm, δPLCLx with high R2 values, are 
correlated with precipitation anomalies going back three months. As in Table 2, the OPAQ coefficients 
A are typically the largest, except notably for δQm. 
 
The first groups are the regression coefficients for the temperature anomalies, δTx, δTm, δTn, and 
δDTR, which were all standardized by the SD of δTm. The fit represented by R2 is largest for DTR, 
and it decreases from δTx to δTn. All the temperature variable anomalies show a strong inverse 
correlation with opaque cloud anomalies that reflect the downward SW radiation. The warm season is 
dominated by negative SWCF as shown in Fig. 3. The negative values of A decrease from δTx to δTn. 
δDTR has a negative correlation to both cloud anomalies, and to the precipitation anomalies going 
back three months. Note that because all the temperatures were standardized by the SD of δTm, the 
coefficients for the diurnal range are the difference of the corresponding coefficients for the maximum 
and minimum. For example, A(δDTR) = −0.61 = A(δTx) − A(δTn), and B(δDTR) = −0.26 = B(δTx) − 
B(δTn) (rounded to two significant figures). We see that the coefficients B change sign in the 
sequence from δTx to δTm to δTn. We also see that Tm falls strongly with cloud, but its coupling to 
precipitation is weak because the coefficients B and C have opposite signs. This regression analysis 
clearly shows that mean temperature anomalies, δTm, are strongly coupled to cloud, and therefore 
solar forcing, but rather weakly to precipitation, while δDTR (and δTx) decrease with both cloud and 
precipitation. We cannot infer causality from multiple regressions, but negative B for δTx is consistent 
with evaporation from moist soils reducing Tx, and the positive B for δTn is consistent with the fact that 
under wetter conditions, the fall of Tn at night is limited by saturation. 
 
The next group are the four RH anomalies, δRHx, δRHm, δRHn, and δDRH. For the first three, the 
regression coefficients show that positive RH anomalies are correlated with positive cloud and 
precipitation anomalies, and the coefficients are significant for both the present and three past 
months. The coefficients for δDRH are negative because δRHn increases faster with cloud and 
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precipitation than δRHx, and the coefficients are significant for only one past month. The R2 fit 
decreases monotonically from the afternoon minimum δRHn to δRHm to the sunrise maximum δRHx to 
δDRH. The diurnal cycle of T and RH have an inverse dependence on opaque cloud, reaching Tx and 
RHn in the afternoon at the same time [16]. This is related to the fact that mixing ratio Q is tightly 
constrained by BL transports, which we will discuss in Section 4.3. However, over land, near-surface 
RH is constrained by the availability of soil moisture for evaporation from bare soil and transpiration 
(which is often modeled as a stomatal resistance to evaporation [22,23]. Soil moisture anomalies are 
related in turn to precipitation anomalies. We see that afternoon RHn and mean RHm anomalies have 
a strong positive correlation to precipitation anomalies, and a large R2. However, RHx, which 
increases with precipitation, is limited if the surface saturation is reached and dew forms before 
sunrise. Because the latent heat release slows the temperature fall, it is consistent that RHx and Tn 
anomalies are both positively coupled to wetter precipitation anomalies for the current month 
(coefficient B). 
 

Table 3. Standardized multiple regression coefficients for the May to August (MJJA) growing 
season merge of 2466 months. For coefficients: plain text represents p < 0.01 (>99%); italic 

represents 0.01 ≤ p < 0.05, and coefficients are omitted for p > 0.05 
 

Variable A (δOPAQm) B (δPR0) C (δPR1) D (δPR2) E (δPR3) R2 

δTx −0.95 ± 0.02 −0.07 ± 0.02 −0.16 ± 0.02   0.58 
δTm −0.67 ± 0.02 0.03 ± 0.02 −0.10 ± 0.02   0.43 
δTn −0.34 ± 0.02 0.18 ± 0.02  0.04 ± 0.02  0.13 
δDTR −0.61 ± 0.01 −0.26 ± 0.01 −0.15 ± 0.01 −0.05 ± 0.01 −0.03 ± 0.01 0.73 
δRHn 0.59 ± 0.01 0.37 ± 0.01 0.23 ± 0.01 0.09 ± 0.01 0.03 ± 0.01 0.69 
δRHm 0.53 ± 0.01 0.32 ± 0.01 0.24 ± 0.01 0.11 ± 0.01 0.04 ± 0.01 0.61 
δRHx 0.38 ± 0.02 0.20 ± 0.02 0.20 ± 0.01 0.10 ± 0.01 0.04 ± 0.01 0.36 
δDRH −0.22 ± 0.01 −0.18 ± 0.01 −0.03 ± 0.01   0.26 
δPLCLx −0.76 ± 0.02 −0.42 ± 0.02 −0.31 ± 0.01 −0.13 ± 0.01 −0.05 ± 0.01 0.68 
δPLCLm −0.55 ± 0.01 −0.30 ± 0.01 −0.25 ± 0.01 −0.12 ± 0.01 −0.04 ± 0.01 0.62 
δPLCLn −0.30 ± 0.01 −0.15 ± 0.01 −0.16 ± 0.01 −0.08 ± 0.01 −0.03 ± 0.01 0.36 
δDPLCL −0.46 ± 0.01 −0.27 ± 0.01 −0.15 ± 0.01 −0.05 ± 0.01  0.58 
δθEx −0.55 ± 0.02 0.28 ± 0.02 0.08 ± 0.02 0.12 ± 0.02  0.21 
δθEm −0.42 ± 0.02 0.30 ± 0.02 0.09 ± 0.02 0.11 ± 0.02  0.17 
δθEn −0.22 ± 0.02 0.34 ± 0.02 0.09 ± 0.02 0.11 ± 0.02  0.13 
δDθE −0.32 ± 0.01 −0.06 ± 0.01    0.37 
δQm −0.06 ± 0.02 0.41 ± 0.02 0.22 ± 0.02 0.16 ± 0.02  0.22 

 
The third group in Table 3 is the four PLCL anomalies: PLCLx is generally representative of afternoon 
cloud-base [9]. PLCL has a strong dependence on RH and a weak dependence on T, and we see that 
negative PLCL anomalies are coupled to positive cloud and precipitation anomalies. The coefficients 
are largest for afternoon δPLCLx, for which R2 is high. The coefficients for δPLCLx, δPLCLm, and δPLCLn 
are all 99% significant for both the present and three past months, showing that cloud-based 
anomalies have a long memory of precipitation anomalies in the growing season. 
 
The fourth group in Table 3 shows the coefficients for δθEx, δθEm, δθEn, and δDθE. The first three show 
the decrease with increased cloud, but an increase with precipitation. The R2 values are small, even 
though the coefficients have 99% confidence. The diurnal range of θE is dominated by the 
dependence of DTR on opaque cloud. The two afternoon anomalies, δθEx and δPLCLx, are related to 
moist convective instability, which is favored by a higher θEx and a lower cloud base. 
 
The diurnal variation of the mixing ratio, Q, has a double maxima and minima, which we will show in 
Section 4.3, and so Table 3 shows only the coefficients for the mean anomaly δQm. The R2 fit is much 
smaller for Q than for RH. The negative correlation to opaque cloud is small, because T and RH have 
an inverse diurnal dependence on cloud. The positive correlation to precipitation anomalies goes back 
two months, consistent with positive precipitation anomalies increasing evapotranspiration. 
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Table 3 summarizes the multiple regression correlation coefficients between warm season near-
surface variables and opaque cloud and lagged precipitation, and gives a quantitatively useful target 
for the evaluation of the coupled processes in models. Two important conceptual results emerge for 
the monthly mean climate on the Canadian Prairies. Afternoon anomalies of δTx, δRHn, δPLCLx are 
strongly correlated to opaque cloud anomalies. Correlation with precipitation anomalies are weaker, 
but stretch back for three past months for these key variables. Anomalies of Qm are coupled to 
precipitation anomalies with memory of two months past, but they have weak correlations to opaque 
cloud. 
 

4.3 Growing Season Coupling of the Diurnal Cycle to Precipitation and Cloud 
 
Fig. 6 showed the very tight coupling in the warm season between opaque cloud and the diurnal 
range of key thermodynamic variables on daily timescales. Table 3 used multiple linear regression to 
show the correlation of the monthly anomalies of thermodynamic variables to anomalies of opaque 
cloud and precipitation. Table 3 confirms the strong correlation with opaque cloud, but shows that the 
coefficients for the lagged precipitation anomalies differ considerably for different variables.  
 
For a graphical representation [16] we approximate by defining a weighted precipitation anomaly 
δPRwt, based on precipitation for just the current month and the past month: 
 

δPRwt = 0.6 * δPR0 + 0.4 * δPR1 (17) 
 
This simplification, with this choice of coefficients in the ratio of 1.5, captures much of the precipitation 
dependence for the variables that have the highest R2, such as DTR, RHn, and PLCLx, because these 
have the ratio of the coefficients B/C ≈ 1.5 in Table 3. 
 
The x-axis of Fig. 7 is 0.1 bins of OPAQm = δOPAQm + 0.46, where 0.46 is the mean opaque cloud 
over all the months. For each MJJA month (total 2466 months), we computed the weighted anomaly 
δPRwt from (17), and added the MJJA mean precipitation rate of 1.8 mm d−1 to give PRwt = δPRwt + 
1.8. We then stratified the data into three ranges of PRwt of <1.2 mm d−1; 1.2 to 2 mm d−1, and >2 mm 
d−1, which have mean values of 0.9, 1.6, and 2.6 mm d−1. There are (531, 1103, 832) months in these 
three PRwt bins. To generate Fig. 7, we compute for each variable bin, the mean and standard error 
(SE) of the anomalies, and add back the MJJA variable means. 
 
Fig. 7 (top-left) shows DTR and its components, Tx and Tn, the top-right shows DRH, RHx and RHn, 
the bottom-left shows DθE, θEx, and θEn and the bottom-right is DPLCL, PLCLx, and PLCLn. The strong 
dependence on opaque cloud, seen in Fig. 6, clearly dominates most of these climate variables, since 
T falls and RH increases with increasing cloud. This is turn is connected to the weak dependence of Q 
on cloud (Table 3). The color scheme is red and blue, respectively, for the dry and wet precipitation 
bins. As PRwt falls, DTR increases faster than Tx. 
 
Fig. 7 (top-right) shows that RHx and RHn (and RHm, not shown) increase with both cloud and PRwt, 
but because afternoon RHn increases faster than RHx, DRH decreases with increasing PRwt. Note 
the rise of RHx with PRwt towards saturation. If RHx reaches saturation at the surface on individual 
days, condensation of dew and the release of latent heat limit the fall of Tn. 
 
Fig. 7 (bottom panels) show the variables that determine the BL coupling to clouds and precipitation. 
Afternoon PLCLx and θEx determine the cloud-base height and moist adiabat. Both θEx and θEn increase 
with PRwt, but the diurnal range DθE depends primarily on cloud instead of precipitation, as shown in 
Table 3. All of the PLCL variables decrease with increasing PRwt. The sunrise minimum of PLCLn falls 
with PRwt, as the surface moves towards saturation. Thus, higher precipitation, which we can loosely 
associate with increased daytime evapotranspiration (ET), corresponds with a lower monthly mean 
cloud base and a higher θE in the afternoon, which would both favor increased convective instability. 
In the warm season on the Prairies, the diurnal cycle of mixing ratio Q has two maxima and minima, 
except under cloudy conditions [9,14,16]. We can graph this dependence on anomalies of opaque 
cloud cover, δOPAQm, and weighted precipitation anomalies, δPRwt, from Equation (17) in mm d−1, 
from the MJJA growing season merge of 2466 months. 
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Fig. 7. Coupling between DTR, Tx and Tn (top-left), (top-right) difference in relative humidity 
(DRH), RHx and RHn, (bottom-left) DθE, θEx and θEn and (bottom-right) DPLCL, PLCLx and PLCLn and 

opaque cloud fraction and weighted precipitation in mm d−1 (adapted from [16]) 
 
Fig. 8 (left panel) shows the stratification by δOPAQm into four ranges: δOPAQm < −0.08; −0.08 to 0; 0 
to 0.08, and >0.08, based on the SD of δOPAQm ≈ 0.08. There are (371, 839, 909, 347) months in 
these respective bins. We averaged in bins the diurnal cycle of the anomalies from the station monthly 
means, calculate the SE, and added back the 12-station MJJA mean of Q. The legend shows the 
mean value for each δOPAQm bin, and in parentheses the corresponding mean of δPRwt. As the 
mean δOPAQm increases from −0.12 to +0.12, the mean δPRwt increases from −0.43 to +0.42 mm 
d−1. We have binned by δOPAQm, but mean OPAQm and precipitation increase together (Fig. 6). The 
small increase in Qm with δOPAQm is consistent with Table 3. 
 

 
 

Fig. 8. Dependence of diurnal cycle of the mixing ratio (Q) on opaque cloud bins (left) and 
weighted precipitation bins (right) [16] 
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The sunrise minimum of Q occurs at the minimum temperature, when the night-time BL is shallow 
with a strong temperature inversion. As the surface net radiation turns positive after sunrise, it drives 
increasing surface sensible and latent heat fluxes. This warms and moistens a shallow ML trapped 
beneath the stable nocturnal inversion, and there is a steep rise of Q. When the surface potential 
temperature reaches that of the top of the capping inversion in mid-morning, the ML deepens more 
rapidly, typically mixing into a deep drier residual ML from the previous day, so that Q falls to the 
afternoon minimum. With less cloud and more solar forcing, the ML can grow deeper, and mix with 
more dry air from above, so both the morning rise and mid-day fall of Q are larger in Fig. 8. Finally Q 
rises again to an evening maximum as the surface layer cools and decouples from the deep BL, while 
ET continues. 
 
Fig. 8 (right panel) is the corresponding partition into four ranges of weighted precipitation anomalies: 
δPRwt < −0.7; −0.7 to 0; 0 to 0.7, and >0.7 mm d−1, based on the SD of δPRwt ≈ 0.7 mm d−1. There 
are (387, 961, 745, 373) months in these respective bins. The legend shows the mean value for each 
δPRwt bin, and again in parentheses the corresponding mean of δOPAQm. With increasing δPRwt, 
there is a large upward shift of the mean diurnal cycle of Q, as Qm increases with precipitation 
anomalies, which we can associate with increased soil moisture and ET. As the mean δPRwt 
increases from −0.99 to +1.23 mm d−1, mean δOPAQm increases from −0.05 to +0.05, and the fall of 
Q from mid-morning maximum to afternoon minimum is reduced as in the left panel. 
 
Clearly, we are dealing with a fully coupled system, but Fig. 3 shows that climatologically, while the 
amplitude of the diurnal cycle of Q increases a little with reduced cloud cover (presumably increased 
solar forcing and vertical mixing), there is a large upward shift in the diurnal cycle with increased 
weighted precipitation, presumably from increased ET. 
 

5. SEASONAL CLIMATE ISSUES 
 

5.1 Seasonal Extraction of Surface Total Water Storage 
 
We made a simplified estimate of the growing season water and energy budgets of the Prairies in 
[12], using fits between opaque cloud and cloud forcing (see Section 3.3) to estimate the surface 
radiation budget. We calculated the seasonal change in total water storage from the GRACE, using 
the gridded 1 × 1 degree monthly land mass grids [7,8], version JPL-RL05.DSTvSCS1401, for liquid 
water equivalent thicknesses for the decade of 2002–2012. This allowed us to link the draw-down of 
total water storage (TWS) [24,25] to precipitation anomalies during the growing season. We will 
present a brief overview, referring to [12] for discussion of some of the uncertainties. 
 
Fig. 9 shows the mean annual cycle of the monthly anomalies of TWS from the annual mean, with the 
small 2002–2012 trend removed. Although the data have been interpolated to a 1 × 1 degree grid for 
user convenience, the effective spatial resolution of the GRACE data is about 300 km, so we 
averaged the data over the Prairie regions of the three provinces. The amplitude of the mean annual 
cycle is 90 mm. We computed ΔTWS:MJJA, the growing season drawdown of TWS for MJJA, as the 
difference between 31 August (mean of August and September) and 1 May (mean of April and May) 
for each year and province. Mean drawdown is ΔTWS:MJJA = −79 mm. 
 
We regressed the anomalies of ΔTWS:MJJA for the years 2002–2012 onto the corresponding 
anomalies of MJJA precipitation, derived from the monthly archive (see [26]: http://ec.gc.ca/dccha-
ahccd/) of the second generation adjusted precipitation dataset. The linear regression fit [12] with R2 = 
0.56, is: 
 

ΔTWS:MJJA = −0.59(±0.08) + 0.56(±0.09) δPrecip(MJJA) (18) 
 
The mean value of Precip(MJJA) for 2002–2012 (details in [12]) is 2.32 mm d−1, while the mean 
drawdown of TWS is 0.59 mm d−1 for δPrecip(MJJA) = 0; or 25% of the mean precipitation. Thus 
Equation (18) shows that, as δPrecip(MJJA) decreases from +1 to −1 mm d−1, ΔTWS:MJJA increases 
from near zero to −1.15 mm d−1, which corresponds to −141 mm over the 123 day growing season. 
The coupling coefficient of 0.56(±0.09) in Equation (18) is effectively a 56 ± 9% damping coefficient 
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for precipitation anomalies in the growing season by changes in the drawdown of TWS. This 
drawdown of stored water in the growing season means that ET > precipitation, and this difference 
increases in dry summers. 
 

 
 

Fig. 9. The mean annual cycle of Gravity Recovery and Climate Experiment (GRACE) total 
water storage (TWS) anomaly by province (from [12]) 

 

5.2 Impact of Land-Use Change on Growing Season Climate 
 

In recent decades, there has been a major change in land use across the Canadian Prairies, as more 
than five million hectares of summer fallow have been converted to continuous cropping [10]. This 
large increase in the area of cropland has increased summer transpiration, which in turn have 
reduced the maximum temperatures in the growing season over the Prairies [27]. Other analyses of 
US Midwest summer temperature maxima also show a cooling from land-use change to cropland [28] 
and cropland intensification [29]. 
 
Fig. 10 summarizes the long-term climate impact of the reduction of summer fallow in Saskatchewan 
[10,15]. The left panel shows the land-use trends in total cropland, pasture, and summer fallow 
around five climate stations in Saskatchewan. We generated local averages of the ecodistrict crop 
data [10] within the 50 km radius circles around each station, as shown in Fig. 1. The climate station 
time-series was split into two periods: a longer historic period, 1954–1991, when summer fallow cover 
was large (although slowly decreasing), and a recent 20-year period, 1992–2011, when summer 
fallow has fallen rapidly to its present low value [30]. 
 

 
 

Fig. 10. Long term trends in total cropland, pasture, and summer fallow around five climate 
stations in Saskatchewan (left); (center) RHm, Qtx and mean precipitation in southern 

Saskatchewan, and (right) mean changes in annual cycle of Tx, PLCLtx, and θEtx for Saskatoon, 
Regina, and Estevan (adapted from [10,15]) 
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The center panel shows the changes between the two time periods. For RHm and mixing ratio Qtx at 
the time of the afternoon Tx. We averaged the 10-day means from Saskatoon, Regina, and Estevan, 
the three southern stations in Saskatchewan with complete datasets [10]. We show the standard 
errors (SE) of the difference between the two mean time series as an indication of significance. For 
precipitation, which has much more variability than temperature and humidity, we used monthly 
precipitation for the 21 stations in Saskatchewan south of 53.22° N, from the second generation-
adjusted precipitation dataset [26]. Error bars are the SE of each monthly mean. The right panel 
shows the corresponding changes in the annual cycle of Tx, PLCLtx, and θEtx between the two time 
periods. 
 
It is clear that there are significant changes in the growing season climate between the historic period, 
1953–1991, and the more recent period since 1992. The vertical dashed lines mark the period 140 ≤ 
DOY < 240 (20 May–27 August) considered in [10] to be representative of the crop growing season. 
Over this time window, the growing season is cooler since 1992, with a drop of Tx of −0.93 ± 0.09 K, 
and significantly moister with a rise of (RHm, Qtx) of (6.9 ± 0.2%, 0.70 ± 0.04 gkg−1). There is a 
corresponding fall of the PLCLx of 22.3 ± 1.1 hPa, and a small rise of θEtx of 1.1 ± 0.2 K, both at the time 
of afternoon Tx. There is also an increase of summer (June, July, and August) precipitation of 25.9 ± 
4.6 mm. 
 
It is reasonable to conclude that we are seeing the fully coupled response to the large shift from 
summer fallow to intensive cropping. It seems that more intensive agriculture has increased 
transpiration, which has cooled and moistened the growing season climate, lowering the cloud-base 
and increasing the equivalent potential temperature. The coupled increase of Q with precipitation is 
consistent with Fig. 8; and the increase of summer precipitation is consistent with the increase in 
moist instability, represented by lower afternoon PLCLx and higher θEtx. Not shown here is a distribution 
shift in cloud frequency: with 6% fewer days with 2–4 tenths, and 7% more with 7–10 tenths cloud 
cover [10]. 
 

5.3 Warm Season Atmospheric and Surface Energy Budgets 
 
The Prairie climate data have no surface nor TOA fluxes, so we will use flux data from ERA-Interim to 
put our analyses in the context of the atmospheric and surface energy budgets for the MJJA warm 
season. We used gridpoint data co-located with the four climate stations Estevan, Regina, Saskatoon, 
and Prince Albert in Saskatchewan that were used in [31] to analyze the near-surface biases of 
temperature in ERA-Interim. We computed the terms in the atmospheric TOA and surface energy 
budget, first on a daily basis, and then for each MJJA station-year, dropping a few days in May with 
surface snow cover. Fig. 11 is a simplified graphical representation of the key flux terms for this region 
of the central Prairies from 49.2 to 53.2° N. 
 
On the left is the SW budget terms. Part of the incoming TOA solar flux is absorbed by the 
atmosphere, part reflected by clouds and atmospheric aerosols, and part is reflected by the surface; 
so that surface SWn = 212 W m−2 is about half the TOA downward flux. On the right is the LW budget 
terms, where the upward surface LW emission of 400 W m−2 is mostly absorbed by the atmospheric 
greenhouse gases, primarily water vapor and CO2, as well as by clouds. About 10% escapes to space 
through the atmospheric infrared window. Clouds and atmosphere re-emit to space, and back to the 
surface, giving a surface LWn = −73 Wm−2. The resulting surface Rn = 139 W m−2 balances the 
upward sensible and latent heat fluxes (40 and 82 W m−2 respectively), and the growing season 
warming of the ground of 17 W m−2, which is probably too large [31]. For the MJJA surface water 
budget, precipitation is 2 mm d−1 and ET is 2.8 mm d−1. ET exceeds precipitation in the growing 
season, because of the substantial drawdown of surface water storage, as discussed in Section 5.1. 
The TOA SWn > outgoing LW for the MJJA warm season. 
 
Table 4 stratifies the 140 station years of data into ECA bins, showing how reflective cloud cover 
changes the TOA and surface energy budgets. The mean values across all the data in bold are those 
that are shown as rounded values in Fig. 11. The model sign convention is downward fluxes are 
positive and upward fluxes are negative. The number of station-years in each bin, denoted by K, is not 
uniform, nor is the distribution across the four stations. Nonetheless, there is a uniform progression as 
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reflective cloud (ECA) increases: TOA SWn, surface SWdn, net radiation, Rn, the sensible heat flux, 
SH, Bowen ratio, BR, and the 2 m temperatures all decrease, while the latent heat flux, LH, and 
precipitation increase. There is compensation between the surface SWn and LWn fluxes as reflective 
cloud changes, which reduces the change in Rn. If there is less reflection by clouds, SWdn increases, 
and this warms the surface, and LWup increases. Because the decrease of cloud cover and 
precipitation are coupled, and ET changes much less than precipitation, we see that the surface BR 
increases by a factor of two as cloud cover and precipitation decrease. 
 

 
 

Fig. 11. Schematic for surface and top-of-atmosphere (TOA) energy budgets for Prairie region of 
southern Saskatchewan 

 
The reanalysis is a fully coupled model representation of the Prairie climate for this 35 yr period, 
mapped here in terms of changing ECA. On average ET exceeds precipitation by 0.86 mm d−1, which 
is largely consistent with the budget analysis in Section 5.1, based on the GRACE data. There is a 
substantial MJJA drawdown of about 80 mm of soil water (not shown), because the model has four 
soil layers to a total depth of 2.89 m with a dynamic range of water storage of 150 mm per meter 
between field capacity and permanent wilting point. However, the model soil water budget has 
additional increments, because the soil moisture reanalysis uses observed 2 m values of temperature 
and humidity and satellite estimates of soil moisture [32] to minimize the model 2 m temperature 
forecast errors. Despite this analysis correction, we found in [31] that on daily timescales, ERA-Interim 
in the warm season has a cold bias in Tx and a warm bias in Tn, so that DTR is biased low; and these 
biases increase under clear skies. Table 4 stratifies four-month composites by ECA, so that it is not 
directly comparable to the daily analysis in [31], but it is likely that Tx and Tn in Table 4 have 
respectively cold and warm biases of about 1 °C. These surface temperature biases are significantly 
reduced in the more recent European Centre reanalysis known as ERA5 [33]. 
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Table 4. Surface and TOA fluxes for the MJJA warm season from ERA-Interim for 1979–2013, stratified by ECA, derived from the gridpoints for 
Estevan, Regina, Saskatoon, and Prince Albert, SK. Mean data in bold are shown in Fig. 11 

 

ECA K TOA 
SWdn 

TOA 
SWn 

Surf 
SWCSdn 

Surf 
SWdn 

SWCF Surf 
SWup 

Surf 
SWn 

Surf 
Albedo 

TOA 
LWup 

Surf 
LWup 

Surf 
LWdn 

Surf 
LWn 

0.146 11 427 326 327 279 −48 −54 225 0.19 −257 −412 328 −84 
0.178 34 427 320 325 268 −58 −49 218 0.18 −252 −406 329 −77 
0.203 47 426 315 324 258 −66 −45 213 0.17 −250 −400 327 −74 
0.230 32 424 310 322 248 −74 −40 208 0.16 −247 −396 326 −69 
0.278 16 427 299 323 233 −90 −38 195 0.16 −242 −389 325 −64 
0.207 140 426 314 324 257 −67 −45 212 0.17 −249 −400 327 −73 

ECA K Rn SH LH BR G PRECIP ET Runoff Tx Tm Tn DTR 

0.146 11 141.6 −53.2 −71.8 0.78 16.7 1.13 −2.48 0.07 24.4 18.5 12.1 12.3 
0.178 34 141.4 −46.1 −77.4 0.62 17.9 1.69 −2.67 0.04 23.0 17.4 11.2 11.8 
0.203 47 139.6 −41.1 −81.5 0.53 17.0 1.91 −2.82 0.06 22.0 16.5 10.5 11.5 
0.230 32 138.3 −33.3 −88.9 0.39 16.1 2.18 −3.07 0.13 21.0 15.8 10.1 11.0 
0.278 16 130.8 −30.9 −84.5 0.37 15.4 2.92 −2.92 0.13 19.4 14.5 9.2 10.3 
0.207 140 138.9 −40.3 −81.8 0.52 16.8 1.97 −2.83 0.08 21.9 16.5 10.6 11.4 
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6. CONCLUSION 
 
We have reviewed progress in the quantitative understanding of the coupling between the land 
surface, clouds, precipitation, snow cover and the climate system that came from analysis of the 
unique long-term hourly Canadian Prairie dataset. This progress was possible because, along with 
conventional hourly measurements, trained observers have recorded opaque cloud fraction hourly 
across the Prairies for the past 60 years. These 24 daily estimates of opaque cloud are of sufficient 
quality that they can be calibrated against BSRN data to obtain the climatology of the daily short-
wave, long-wave, and total cloud forcing. This key radiative forcing of the surface energy budget has 
previously not been available for long-term climate datasets. We found that net cloud radiative forcing 
changes sign from negative in the warm season to positive in the cold season with snow cover. This 
transforms the coupling between cloud cover and the diurnal cycle between warm and cold seasons. 
In the warm season, maximum temperature increases with decreasing opaque cloud, while minimum 
temperature barely changes. In contrast in the cold season with snow cover, maximum temperature 
falls with decreasing cloud while minimum temperature falls even more steeply. Although our results 
are stratified by the observed opaque cloud cover, we show the regression Equations (10) and (11) 
that convert opaque cloud into cloud radiative forcing. 
 
We have shown the many ways in which snow cover acts as a climate switch between two non-
overlapping climate regimes, producing a systematic cooling of 10°C or more. With fresh snow cover 
in November, the temperature falls 10°C during the transition. Simply separating cold season days 
into those with and without snow cover shows that these are two distinct climates, again separated by 
10°C. The traditional merging of these two climates is unrepresentative, since typically the near-
surface boundary layer also changes from unstable to stable with snow cover. As cloud cover falls, 
the climate cooling with snow increases. Mean cold season temperatures fall by almost 1.5°C for each 
10% increase in the fraction of days with snow cover. 
 
In the warm season with no snow cover, the diurnal ranges of temperature, relative humidity, 
equivalent potential temperature, and the pressure height of the lifting condensation level all fall 
steeply with increasing opaque cloud cover. Remarkably, this tight coupling between diurnal range 
and cloud cover is almost unchanged from April to September, so we provide quadratic fits to the 
mean profiles. Given 600 station-years of hourly data, we are able to extract, perhaps for the first 
time, the relationship between cloud forcing and the warm season imbalance of the diurnal cycle. This 
imbalance over 24 hr changes monotonically from a +2°C warming and a −6% drying under clear 
skies, to a −1.5°C cooling and 6% moistening under cloudy skies with precipitation. Correspondingly, 
there is a 24 hr rise of θE and LCL under clear skies, and a fall of both under cloudy skies. 
 
On daily timescales, the radiative forcing dominates, and the changing cloud forcing drives the 
changing diurnal cycle of the thermodynamic variables. On longer timescales, such as monthly and 
seasonal, precipitation anomalies, stored as soil moisture anomalies, change the ET and modify the 
diurnal response. Since we know the cloud radiative forcing which is large on daily timescales, we can 
show statistically that the memory of water storage anomalies, from precipitation and the snowpack, 
goes back many months. The spring climatology for April shows the memory of snowfall back through 
the entire winter, and the memory in summer months goes back to the months of snowmelt. 
 
In addition, we showed how the thermodynamic coupling of the diurnal cycle to the cloud forcing is 
modified by lagged precipitation anomalies. With reduced precipitation, the diurnal ranges of T, RH, 
and PLCL, but not θE, increase. With increased precipitation, afternoon Tx falls a little, while RHn and 
θEx increase and PLCLx, representing cloud-base, falls. 
 
Climatologically, the diurnal cycle of Q has a sunrise minimum, a rise to a mid-morning maximum 
while evaporation is trapped beneath the nocturnal inversion, then a fall to an afternoon minimum, as 
water vapor is rapidly transported upward into a deep daytime BL; followed by a second rise to an 
evening minimum as the surface cools and starts to uncouple from the mixed BL. We showed that 
while the amplitude of the diurnal cycle of Q increases a little with reduced cloud cover (presumably 
from increased solar forcing and vertical mixing), there is a large upward shift in the diurnal cycle of Q 
as weighted precipitation increases, presumably from increased evaporation. 
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The GRACE satellite data from a recent period show that the seasonal extraction of the surface total 
water storage is a large damping of the interannual variability of precipitation anomalies in the growing 
season. Over a range of precipitation anomalies of ±1 mm d−1, the seasonal extraction of ground 
water increases from near-zero with high precipitation, to 1.15 mm d−1 for low precipitation. 
 
Also on seasonal timescales, the large land-use change on the Prairies from summer fallowing to 
intensive cropping, with the most rapid transition in the early 1990s, has led to a coupled climate 
response that has cooled and moistened the growing season, lowering cloud-base, increasing 
equivalent potential temperature, and increasing precipitation. 
 
Finally, we compute the atmospheric energy and water budgets for four stations in Saskatchewan for 
the 35-y period of the ERA-Interim reanalysis, to show graphically the mean TOA and surface budgets 
that are representative of the Canadian Prairies for the MJJA growing season. We also show the 
dependence of these budgets on reflective cloud cover for this fully coupled model system. 
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