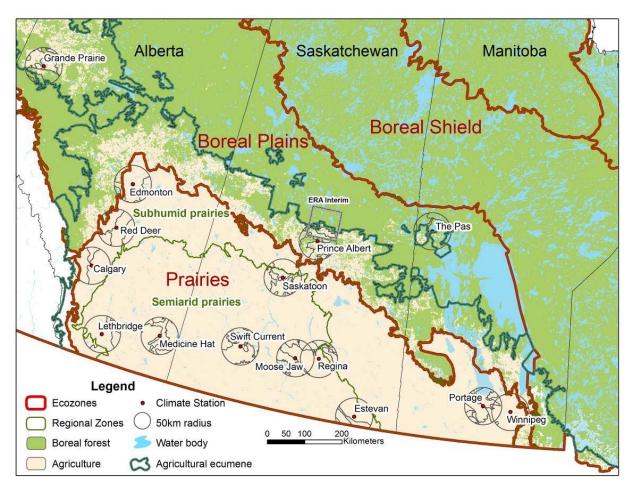
Hydroclimatology: an integrated view

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

Co-authors: Ray Desjardins, Devon Worth Agriculture and Agri-Food Canada Ahmed Tawfik (NCAR) Anton Beljaars (ECMWF)

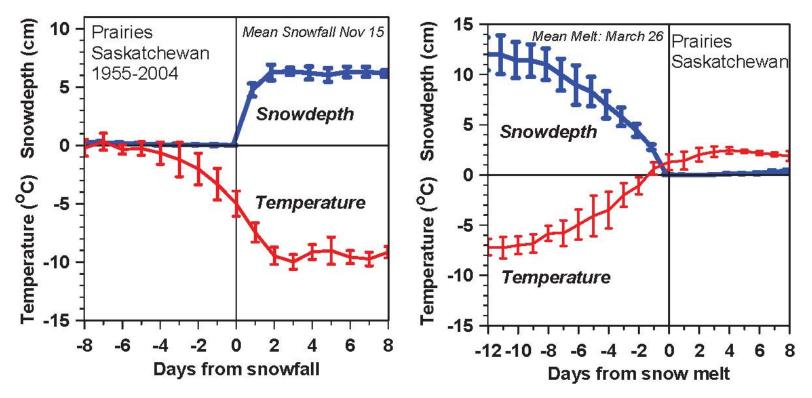

Boston University

April 24, 2017

This talk

- **Background:** Remarkable 55-yr hourly Prairie data set with opaque/reflective cloud observations
- Northern latitude climate
 - Large seasonal cycle
 - Snow is a fast climate switch
 - Two separate "climates" above and below the freezing point of water
 - Summer hydrometeorology
 - T and RH have joint dependence on radiation and precipitation on monthly timescales
 - Observational evaluation of reanalysis

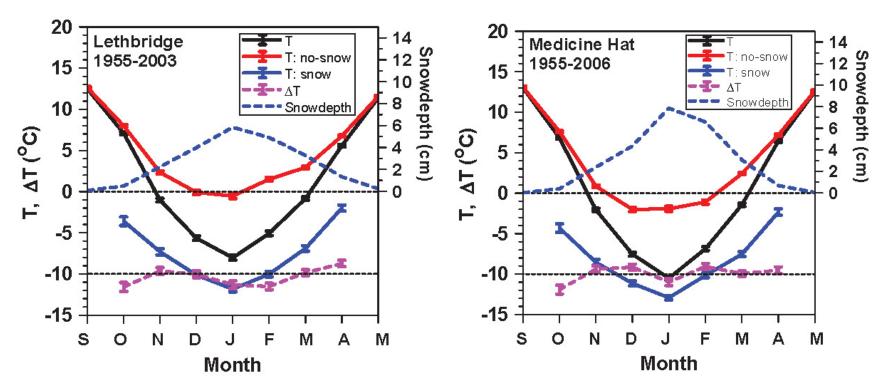
15 Prairie stations: 1953-2011



- Hourly p, T, RH, WS, WD, <u>Opaque Cloud</u> by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

http://alanbetts.com

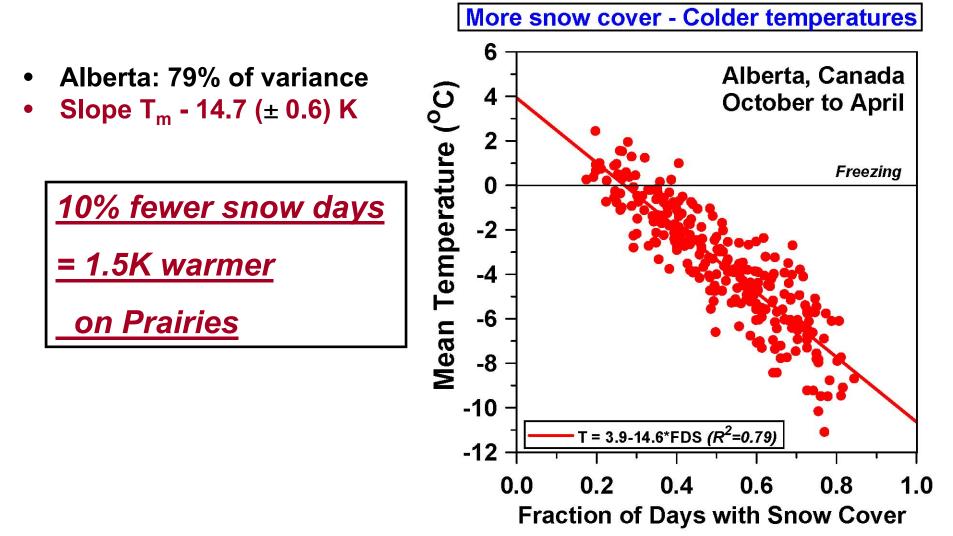
- Betts, A.K., R. Desjardins and D. Worth (2013a), Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118,* 1–19, doi:10.1002/jgrd.50593
- Betts, A. K., R. Desjardins, D. Worth, and D. Cerkowniak (2013), Impact of land use change on the diurnal cycle climate of the Canadian Prairies, J. Geophys. Res. Atmos., 118, 11,996–12,011, doi:10.1002/2013JD020717.
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies. *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021168
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014), Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos. 119, 13305-13326, doi:10.1002/2014JD022511
- Betts, A.K., R. Desjardins, A.C.M. Beljaars and A. Tawfik (2015). Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front. Earth Sci. 3:13. http://dx.doi.org/10.3389/feart.2015.00013
- Betts, AK and A.B. Tawfik (2016) Annual Climatology of the Diurnal Cycle on the Canadian Prairies. Front. Earth Sci. 4:1. doi: 10.3389/feart.2016.00001
- Betts, A. K., R. Desjardins and D. Worth (2016). The Impact of Clouds, Land use and Snow Cover on Climate in the Canadian Prairies. Adv. Sci. Res., 1, 1–6, doi:10.5194/asr-1-1-2016
- Betts, A.K., A.B. Tawfik and R.L. Desjardins (2017): Revisiting Hydrometeorology using cloud and climate observations. *J. Hydrometeor., 18*, 939-955.
- Betts, A. K. and A. C.M. Beljaars (2017): Analysis of near-surface biases in ERA-Interim over the Canadian Prairies. Submitted to JAMES.


Snowfall and Snowmelt ΔT Canadian Prairies

- Temperature falls/rises 10K with first snowfall/snowmelt
 - <u>Local climate switch between warm and cold seasons</u>

Betts et al. 2014

Impact of Snow on Climate



Separate mean climatology into days with no-snow and snowdepth >0

ΔT = T:no-snow –**T:snow** = -10.2(±1.1)°C

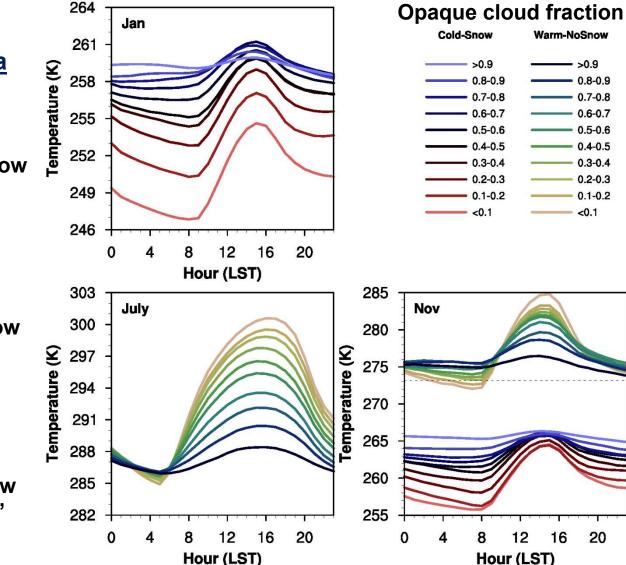
Betts et al. (2016)

Interannual variability of T coupled to Snow Cover

Diurnal cycle: Clouds & Snow

Canadian Prairies 660 station-years of data

Winter climatology


- Colder when clear
- LWCF dominant with snow

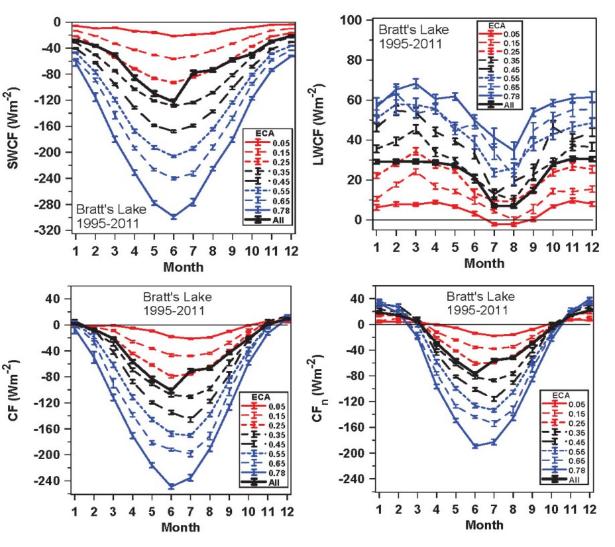
Summer climatology

- Warmer when clear
- SWCF dominant: no snow

Transition months:

- Show <u>both</u> climatologies
- With 11K separation
- Fast transitions with snow
- Snow is "Climate switch"

Warm and Cold Seasons


- Unstable BL: SWCF -
- Clouds at LCL
 - reflect sunlight

- Stable BL: LWCF +
- Cloud reduce LW loss
- Snow reflects sunlight

SW and LW 'Cloud Forcing' BSRN at Bratt's Lake, SK

- "Cloud Forcing"
 - Change from clear-sky flux
- Clouds reflect SW
 - SWCF
 - Cool
- Clouds trap LW
 - LWCF
 - Warms
- Sum is CF
- Surface albedo reduces SW_n
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve
- <u>Regime change</u>

(Betts et al. 2015)

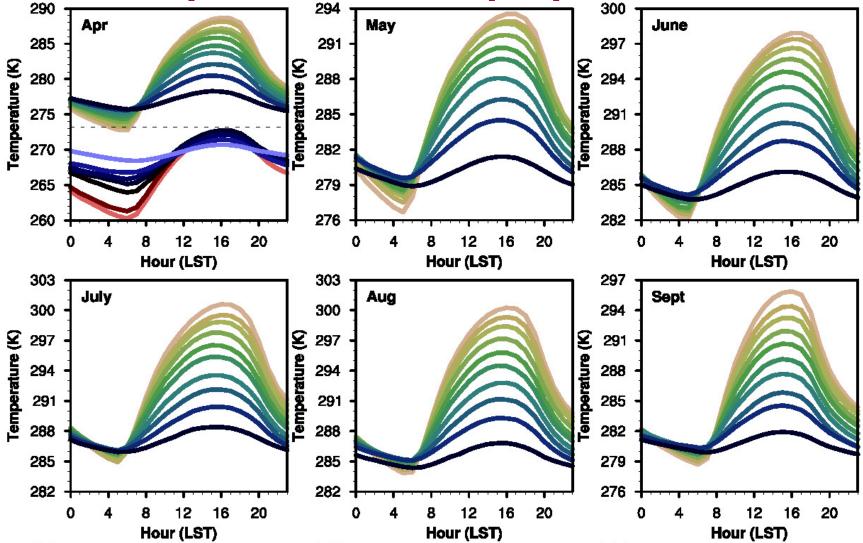
Impact of Snow

- Distinct warm and cold season states
- Snow cover is the <u>"climate switch"</u>
- **<u>Prairies</u>**: $\Delta T = -10^{\circ}C$ (winter albedo = 0.7)
- Vermont: $\Delta T = -6^{\circ}C$ (winter albedo 0.3 to 0.4)
- Snow transforms BL cloud coupling
 - No-snow 'Warm when clear' convective BL
 - Snow 'Cold when clear' stable BL
- Don't average snow/no-snow climates

Warm Season Climate (April – October with no snow)

- "Climate" historically: T and Precip.
- In the fully coupled system
 - <u>Diurnal cycle of T and RH coupled</u>
 - to Radiation/cloud and Precipitation
- Monthly timescale: strongest link is to <u>cloud</u> but precipitation memory long

Betts et al. 2014b, 2017


Diurnal Cycle Climate

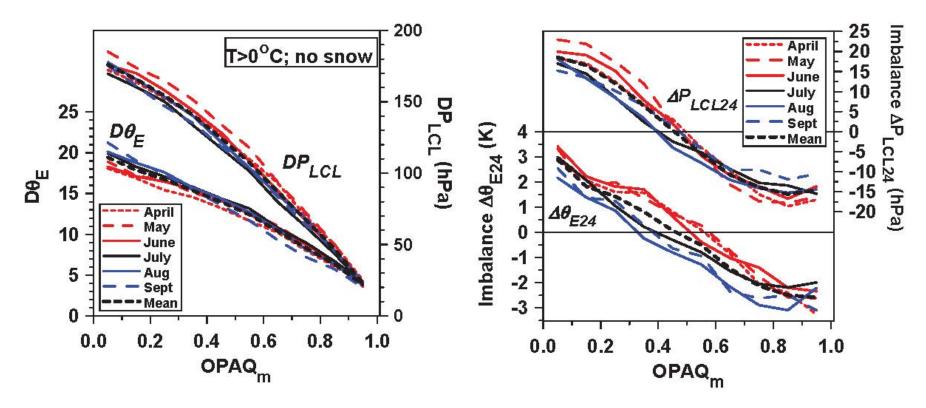
Diurnal cycle: T, RH, θ_E , P_{LCL}

- $-DTR = T_x T_n$
- DRH = RH_x RH_n
- $-D\theta_{E}$, DP_{LCL} similarly

-Imbalance of diurnal cycle "climate"

Monthly Diurnal Climatology: Dependence on opaque cloud

Q: How much warmer is it at the end of a clear day?


Diurnal Ranges & Imbalances

- April to Sept: <u>same coupled structure</u>
- Q: Clear-sky: warmer (+2°C), drier (-6%)

(Betts and Tawfik 2016)

Diurnal Ranges & Imbalances

- April to Sept: <u>same coupled structure</u>
- Clear-sky: θ_E (+3K), LCL higher (+18hPa)

(Betts and Tawfik 2016)

Multiple Regression on Cloud and Lagged Precip. Anomalies

- Monthly anomalies (normalized by STD of means)
 - opaque cloud (CLD) (surrogate for radiation)
 - precip. (PR0, PR1, PR2): current, previous 2 to 5 months

<u>April: memory of precipitation back to November</u>

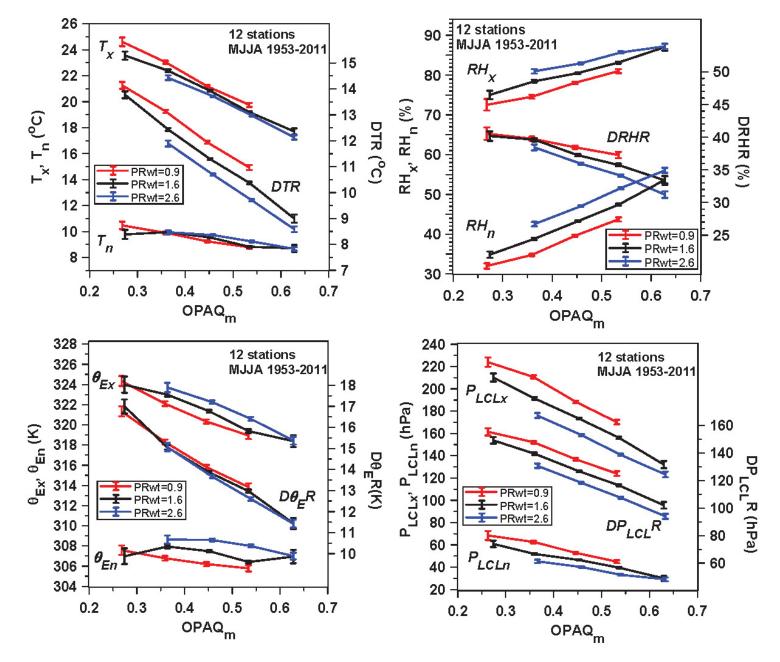
June, July, Aug: moisture has memory back to March

April: Multiple Regression on Cloud and Lagged Precipitation

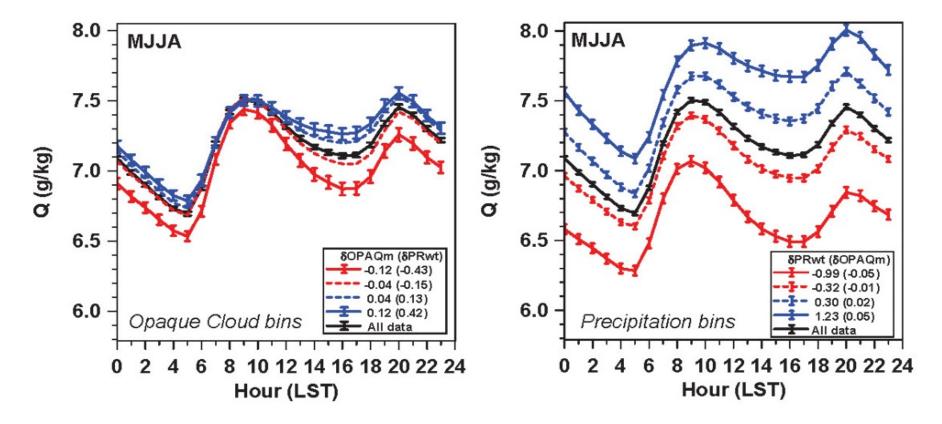
1953-2010: 12 stations (620 months)

Variable	δDTR	δT _x	δRH _n	δP _{LCLx}	
$\mathbf{R}^2 =$	0.67	0.47	0.65	0.66	
Cloud-Apr	-0.52±0.02	-0.78±0.04	0.76±0.03	-0.93±0.04	Dominant
PR-Apr	-0.06±0.02	(0.01±0.04)	0.20±0.03	-0.19±0.04	
PR-Mar	-0.12±0.02	-0.22±0.04	0.23±0.03	-0.27±0.03	
PR-Feb	-0.07±0.02	-0.12±0.04	0.16±0.03	-0.19±0.03	
PR-Jan	-0.09±0.02	-0.19±0.04	0.17±0.03	-0.21±0.03	
PR-Dec	-0.06±0.02	(-0.06±0.04)	0.16±0.03	-0.19±0.03	
PR-Nov	-0.08±0.02	-0.13±0.04	0.07±0.03	-0.11±0.03	

April remembers precip. back to freeze-up

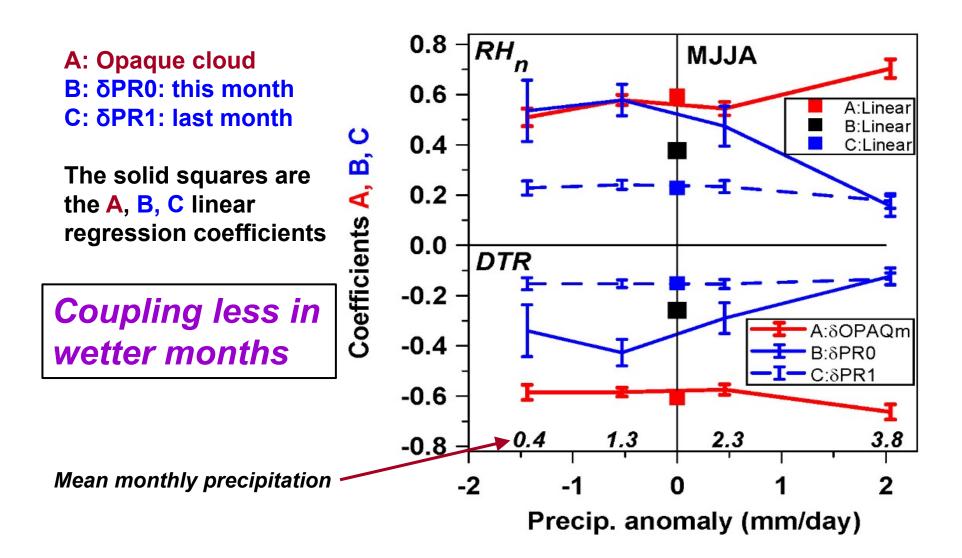

Summer Precip Memory back to March

JULY 1953-2010: 12 stations (614 months)

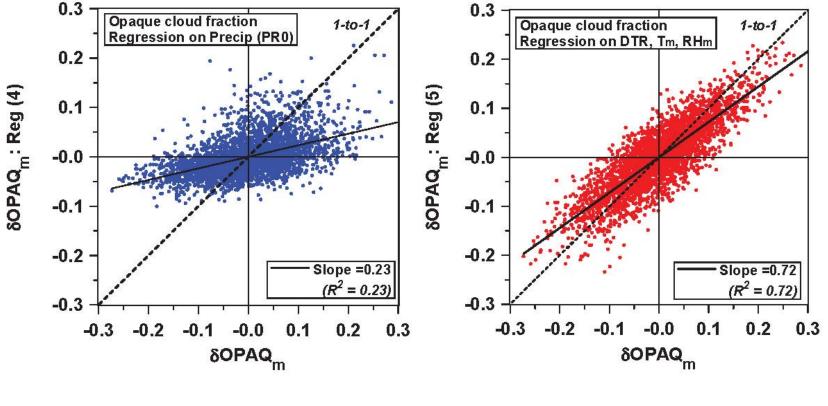

JULY	δDTR	δRH _n	δP _{LCLx}	δQ _{Tx}
R ²	0.68	0.61	0.62	0.26
Cloud-July	-0.56±0.03	0.50±0.03	-0.63±0.04	(0.03±0.04)
PR-July	-0.31±0.02	0.37±0.03	-0.45±0.04	0.34±0.04
PR-June	-0.22±0.02	0.34±0.03	-0.44±0.04	0.38±0.04
PR-May	-0.12±0.02	0.11±0.03	-0.16±0.04	0.16±0.04
PR-Apr	-0.04±0.02	0.06±0.03	-0.06±0.03	0.12±0.04
PR-Mar		0.06±0.03	-0.07±0.03	0.10±0.04

June, July, Aug have precip memory back to March

MJJA on cloud and Precipitation



Diurnal cycle: Mixing Ratio Q


Dependence on cloud small; on precipitation large

Non-linear coupling to precipitation: Stratify by precipitation anomaly δPR0 for current month

Cloud on Climate variables

MJJAS

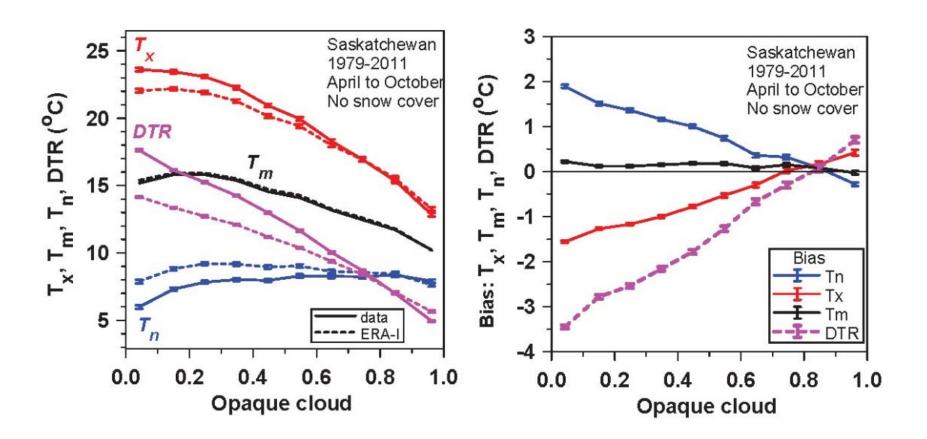
Precipitation

DTR, T_m, RH_m

Regression equations

δΟΡΑQ_m = 0.48*δPR0 (R^2 = 0.26)

$$δOPAQ_m = -0.64*δDTR - 0.23*δT_m + 0.11*δRH_m (R2= 0.72)$$

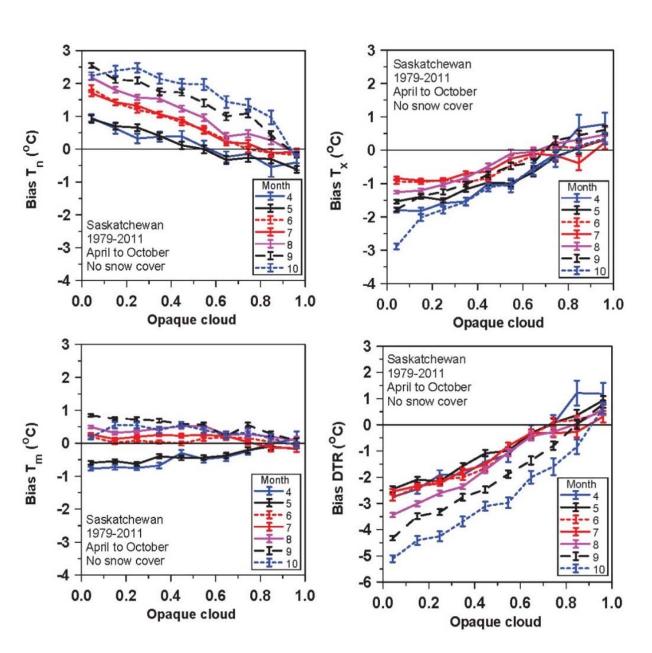

Tight inverse coupling: cloud and DTR

Warmer climate release cloud? Moister climate release cloud?

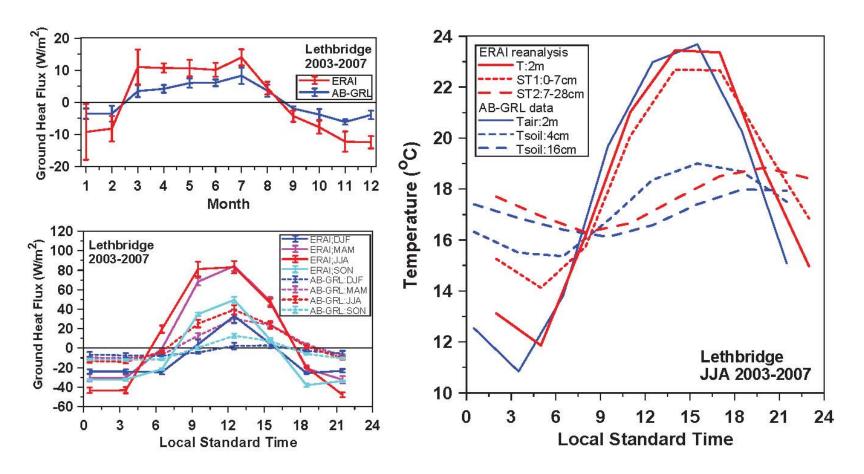
Conclusions-1

- Remarkable dataset with opaque cloud
- Cloud radiative forcing variability dominates diurnal and monthly timescales
- Warm season precipitation memory back to March (early snowmelt)
 - Stronger for moisture variables than DTR
- Coupling of monthly climate to precipitation anomalies is non-linear
- Clouds and climate are tightly coupled on monthly timescale

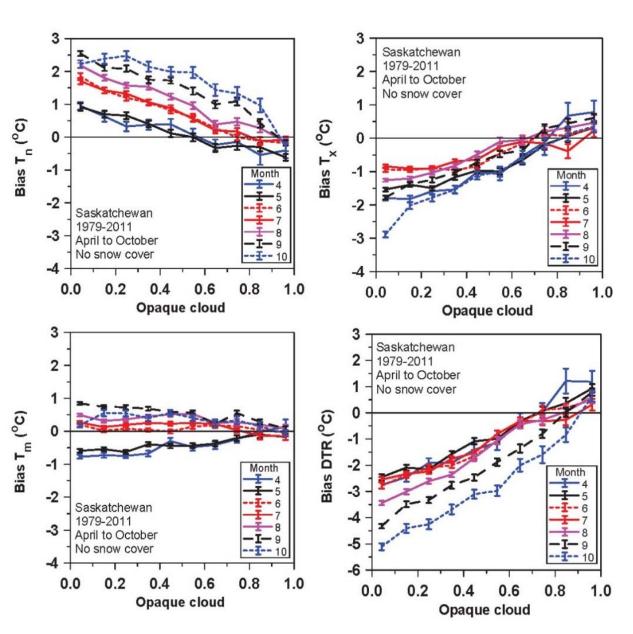
ERA-Interim Biases


Warm season (no snow cover)

 $-T_x$ cold, T_n warm; DTR too small


Monthly biases

- Seasonal trends large
- bias:T_n increases April to Oct
- bias:T_x min in JJ
- bias:T_m changes sign: spring to fall
- bias:DTR reaches -5°C in Oct


Ground coupling too strong

- Diurnal and seasonal ground flux in ERA-I too large
- Ground temperatures too warm in summer

Biases

- T_n warm: ground flux too large at night : ground cold in April, warm in Oct
- T_x cold: ground flux too large in day: G/R_{net} smallest in June, July
- T_m changes sign: ground too cold in spring, too warm in fall

Impact of Snow

- Distinct warm and cold season states
- Snow cover is the <u>"climate switch"</u>
- Prairies: ΔT = -10°C (winter albedo = 0.7)
- Snow transforms BL cloud coupling
 - No-snow 'Warm when clear' convective BL
 - Snow 'Cold when clear' stable BL
- Don't average snow/no-snow climates!

Papers at <u>http://alanbetts.com</u>

Warm Season Climate

- "Climate" historically: T and Precip.
- In the fully coupled system
 - <u>Diurnal cycle of T and RH coupled</u>
 - to Radiation/cloud and Precipitation
- Monthly timescale: strongest link is to cloud but precipitation memory long

Papers at <u>http://alanbetts.com</u>

ERA-Interim biases

- Surprisingly large
- Surprising seasonal shifts
- Qualitatively linked to bias in ground fluxes
- Importance?
 - Agricultural models use seasonal forecasts and reanalysis: need to remove model biases!
 - Model biases need to be fixed!
- DATA, DATA, DATA matters