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SUMMARY

This paper discusses the thermodynamic transports of heat, liquid water and (briefly) water vapour by
non-precipitating cumulus convection. It is shown that because of the irreversible mixing between cloud and
environment, there is a downward transport of enthalpy in the cumulus layer. A lapse-rate adjustment model
relates stratification to the life-cycle of a model cloud parcel, A sub-cloud layer model specifies the lower
boundary of the lapse-rate model, and the convective transports through cloud-base. Budget equations together
with the lapse-rate model, and its time dependent boundary conditions, predict the time development of the
eumulus layer, and show the dependence on large-scale mean vertical mation, cloud-base variations, and the
surface sensible heat flux.

List OF sYMBOLS

T temperature

0 potential temperature

Og equivalent potential temperature

fgs saturation equivalent potential temperature

0y, liquid water potential temperature (defined in Section 2)
Fg fux of pCp B

I 28/2z

Iy 26{dz for wet adiabat

ds entropy change

p total moist air pressure

Pa partial pressure of dry air

z height co-ordinate

t time

p air density

¥ total water mixing ratio

rs saturation vapour mixing ratto

TL liguid water mixing ratio

gs = vs{l 47

qe =rifl + 7

qv mass of water vapour per unit mass of moist air
es saturation water vapour pressure

C specific heat of liquid water

Cpr spectfic heat of water vapour at constant pressure
Cy specific heat of dry air at constant pressure

" gas constant for 1 gm of water vapour
R gas constant for 1 gm of dry air
L latent heat of vaparization of water
g acceleration due to gravity
W vertical air velocity )
w* parameterization of convection in terms of an environmental W
M ‘parcel mass
S scale fength for dilution
E dimensionless dilution parameter
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"D kinetic energy dissipation parameter (Section 3)
k- kinetic energy dissipation parameter (Section 4)
DDt time derivative following an air parcel
Vh horizontal gradient operator
~ denotes areal average

’

denotes deviation from an areal average
denotes layer average

(p) denotes parcel variable
(e) denotes environmental variable
(c) denotes cloud parcel variable

%, ¥ horizontal co-ordinates
dV, dA elements of volume, area respectively
Suffixes s, ¢, b, d, 1, 2, 3 are defined in the text and by diagrams.

1. INTRODUCTION

Extending the classification of Ludlam (1966), one might distinguish four scales of
atmospheric convection: dry, cumulus, cumulonimbus and large-scale slope convection.
This paper is concerned with the first two, dry convection and non-precipitating cumulus
convection.

One important meteorological problem is to understand convective transport pro-
cesses In order to incorporate these parametrically into large-scale numerical models.
In Section 2, certain physical concepts are discussed, chiefly concerned with the thermo-
dynamic transports of heat, and liquid water by a typical cloud. Momentumn transports by
convection and radiative transfers are not considered. The existence of a stratification
characteristic of the population of convective elements (Ludlam 1966) is then assumed, and
in Section 3 a lapse-rate model for the cumulus laver Is constructed from the physical
models discussed in Section 2. This lapse-rate structure is specified once the boundary
conditions above and below the cumulus layer (l.e. in the free atmosphere and the sub-
cloud layer) are known. Thus the time dependence of these boundary conditions (Sections
4 and 5) determines the time dependence of the temperature stratification, while at all
times a stratification consistent with the presence of cumulus convection is maintained.
The magnitudes of convective transports of enthalpy are therefore implicitly determined
by these temperature changes, and the budget equations discussed in Section 5, rather than
explicitly specified in terms of the details of a cloud population. This procedure is thought
to be a realistic representation of the response of a convective field, constrained to a certain
thermal structure by the physics of the individual cumulus clouds, to the boundary con-
ditions (e.g. surface heating) forcing the convection.

2. PHYSICAL CONCEPTS

(a) Thermodynamics

(i} Exact equations, Dry convection has two thermodynamic variables, potential
temperature, &, and water vapour qv: the corresponding extensive quantities {(e.g. [pCp8dV)
are independently conserved in both isobaric mixing and adiabatic motion. (For potential
heat conservation, see Ball 1936.)

The phase change of water in moist convection introduces a third variable, liquid
water, gz, which complicates the thermodynamics significantly. An exact treatment of the
problem will be outlined briefly, before deducing approximate relations which are accurate
to better than 5 per cent for non-precipitating cumulus layers only a few km deep.

The simplification which will -be made to characterize non-precipitating convection
Is to assume that liquid water is carried with air parcels and has the same temperature.
The reversible water saturation adiabat is the appropriate thermodynamic reference pro-
cess (Saunders 1957),
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4S = 0 = (Cp + 1)L T L d(us) R@E . W
ﬁ
where dS is the entropy change of the whole system containing 1g of air and r g of water,
Cyp, C are the specific heats of dry air and liquid water respectively,

R, pa are the gas constant and partial pressure of dry air. Other symbols are listed at
the beginning of the paper.

The process involved in defining the entropy of the mixture is the heating of the air
plus liquid water from absolute zero to (T,pe), followed by the reversible evaporation of
hiquid water at {T,pe) to satirate the parcel. Eq. {1) can be manipulated in several ways
using the Clausius-Clapyron equation,

des  Les
T TR : : : - @
and
dL
| T Cpp — C . ; . . (3
together with the constraint that the total water (r = r5 -+ rz) is constant
0 = dry -+ drz . . . . (4
One form of theoretical interest is:
dT Lry des dpa
dS =0 = (C;p 4 TC?}'{))T -— d(—T‘) —_ TR”E — R— a . (5)

where entropy is defined in terms of the condensation of liquid water from air plus water
vapour heated from absolute zero: the opposite viewpoint of Eq. (1). However, the last
two ferms cannot be combined without approximation (unlike Eq. (8)), and it is useful to
derive a symmetrical pair of equations from (1) {(or (5)) using Eqs. (2), (3) and (4).

ds T L dp
1 + r Cpm T + d 8 Rm ; - . (6)
ds dT L dp i
1+T—0——Cpm T _d] _ m; . . (J’)

where
(1 4 1Cpm = (Cp + TSC;,_.U + r.C)
{1 +7Rm = (R +rsRo)
gs = rs/(1 +7)
gr = vif(1 -F 1)

The last term in Eq. {(6) and Eq. (7) follows from the relationship
di
(R + rSRU)— - nRuﬁ +R e o . e

which is satisfied although des/es £ dpa/pa.
Eq. (6) with . = 0 defines the water saturation pseudo-adiabat, and is usually used to
define the (saturation) equivalent potential temperature, dps.

d6 iT L d
0= Cong ™ = Com = + odas — Rm?p. . G

Clearly one can define a second parameter conserved in reversible wet adiabatic motion
from Eq.{7) {or Eqg. (3)).
déy, dT L dp

0= Cpm 6 = Cpm Td(.}L - Rm P . - (10)
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However, for practical meteorological use, some approximation is convenient.

(1) Approximate relations: A useful level of approximation adequate for this paper,
since 1t is accurate to better than 3 per cent for non-precipitating cumulus layers only a
few km deep, is to use dry air values for the specific heat and gas constant.

(_:pm ~ Cp
Rm = R
Hence
df de L
G HES Co g + 7 das . . NGES

Without the subscript S, this equatlon 15 used to define changes in equivalent potentlal
temperature g of an unsaturated air parcel.
£q. (10} becomes . -

df dd L S
Colgr=Coy —Fda . .. (12)

Eq. {12) can be integrated with a further approximation of the same order (for comparison,

approximate Eq. (5)) to give
Lq[,)
8 =~ Dexpl— . - . . 13
¢ e’“p( CoT) (13)

5, will be referred to as a liquid water potential temperature, and represents the potential
temperature attained by evaporating all the liquid water in an air parcel through reversible
wet adiabatic descent. The analogy with g is clear.

Certain symmetries exist between the four variables 4, 8;, fgg, 0. 8 and 8gs are func-
tions of (T,p) only, and are hence always uniquely related. Two of the four are necessary
to uniquely define an air parcel. For a saturated parcel, gs = g5 (p,T), fg = 8es; and
(6L, fes) are convenient, and sufficient to define parcel properties. For an unsaturated
parcel @ = 8;; and as a sufficient variable pair, we may choose (8, 0g). Just as g for a
parcel is plotted on a tephigram using the co-ordinates (p, xs), so @, will be plotted with
co-ordinates (p, #) (see Fig. 1). Thus if a parcel descends moist adiabatically conservmg
01, this becomes the potential temperature attained when g5, = 0.

The variable pair (¢, frs) s more useful than (#y, ) for a saturated parcel, since both
1, 8g are conserved not only in wet adiabatic motion, but the corresponding extensive
quantities (e.g. [pCp8,dV) are conserved in isobaric mixing, to the extent that isobaric
variations of #/6y, & &1 may be neglected. The binomial expansion of Eq. (13) illustrates
this approximation

Lo

c,T % (14)

9[, ~ 3 —
Typically these two terms, and the use of the specific heat of dry air, give (¢ — 6} to an
accuracy of a few per cent. Clearly 8. is conserved to this accuracy in isobaric mixing.

(b) Dilution, mixing, or entratnment

Mixing processes {often referred to as entrainment, and here regarded as a process of
dilution) between rising or sinking convective elements and their environment are cructal
to non-precipitating convection. It will be shown that it is only through mixing that an
irreversible transport arises (an upward transport of fg; a downward transport of 0r).
A simple parameterization of the life-cycle of a typical cloud parcel will be presented here.

-By considering dilution of a parcel mass M at a rate dM/dz (positive on ascent when
dz is positive), one obtains the differential equations for parcel fz(p) and 8z{p) in terms of
an ‘entrainment rate " and environmental values, assuming conservation in isobaric mixing.
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dm
;f; [(MEx(p)] =~ Oxle)

therefore e L s — o). .. (D)

When the parcel is saturated 8z(p) = Ogs(p). Similarly

déy dM
VO ) N 10

It is supposed that the environment is unsaturated, when 6r(e) = 8(e). If the parcel is
unsaturated, Eq. (16) becomes simply an equation for #(p), useful also for dry convection.

Eq. (15) and Eq. (16) will be used for the dilution of a cloud parcel with its environ-
ment. This division into cloud parcel and environment is a simplification, made because
it is convenient to assume that the ‘ environment ' remains unmodified during the life-cycle
of the cloud parcel under consideration. Two modifications of the environment entrained
into a cloud can be distinguished. First, the modification of the mean atmosphere; which
-has a longer time-scale than the life cycle of a convective element when the fractional area
cover of active convection is small. Second, an ascending or descending cloud parcel may
also lose material (to the ‘environment ') which may then be re-entrained. This latter
possibility will be neglected in this simple model, without serious consequences, since only
by comparison with observations can appropriate values for the dilution or entrainment be
estimated. This complex process wiil here be represented by a single parameter, a scale
length S for dilution {see Section 2(c)), to be deduced from observations,

11 dM

On ascent 3 = M dz . . . . (17)

A parcel will be considered to rise, avershoot its level of equilibrium to reach a maxi-
mum height, and fall back; still dituting for simplicity at the same rate.

On descent kv . . . . (8)
Substituting Eq. (17) and Eq. (18) into Eq. (16) as example
d0r(p) 1
. T = Eglee e . . (9)

for ascent and descent respectively.

Dilution introduces an essential irreversibility, an asymmetry between up and down.
The turbulent (sub-cloud scale) mixing processes do not reverse when the vertical motion
of the parcel changes sign. In the familiar terms of liquid water content (closely related to
81), saturated ascent condenses water, but some is evaporated by entrainment of unsaturated
environment; while on saturated descent, evaporation occurs both by the increase in
saturation mixing ratio and by entrainment. Eq. (19) expresses this for the conserved
pararneter 6r.

The cloud parcel lapse rate can be deduced from the 8z analogue of Eg. (19). On
ascent

ds
Tl Lo —tsste) - .. @)

The left-hand side is directly related to I'c (d#{p)/dz) and I'w (38/dz for the wet adiabat)
through the Clausius-Clapyren Eq. (2)
1 dﬁgs(p) K

S _(—p)(rc—rw) . ) L@
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204,
where K~1+4 —Cé%q——.;s
If one substitutes for 8g(e) — fgs{p) in terms of temperature and water vapour differences,
the famillar entrainment formula is reconstructed (see e.g. Hess 1939, p. 108).

Fig. 1 shows a sketch tephigram with the paths of 8£(p), 0.(p) (Eq. (19} and its g
analogue) drawn for a typical cloud parcel with a typical stratification. This diagram 1s a
concise summary of the thermodynamics (and energetics) of a model non-precipitating
cumulus cloud parcel. The ascent curve for 8xs(p) is well known: the same curve uniquely
defines I'c (Eq. (21)), which differs from the wet adiabat (85 constant} because of dilution
with environmental air. Because of this dilution, 8.(p) is also not conserved, but always
tends towards &e) ( = @1{e}) both on ascent to a maximum height, and on the subsequent
_ descent. The difference at constant pressure between the two dotted parcel paths on the
T or 8 axes is related to the parcel liquid water content (Eq. (14)). Thus the intersection of
these two parcel paths, if it occurs, indicates the point where the parcel on descent has
evaporated all its liquid water. This case, where cloud parcels all re-evaporate {rather than
spread out for form layer clouds), will be considered in this paper.

SOUNDING B1e)

SOUNDING 6 (e] , [ErviRONMENT]
[ EnvironmERT) )
\ Z
¢LOUD TOP
ORY
ADIABAT AbiABAT

N e
“PARCEL ™~
\ E:\ PATH &)
N\ (BlpyWHEN
UNSATURATED)
N

PARCEL
PATH

)

Gt

4

v {8 dp)-WHEN SATURATED)
e .

—— 38 : 81p)- Bla)

\ [ __L8

\ —R0 v

|| 88 =fel- G (p
1 z CLOUD BASE

b

Figure 1. Sketch tephigram between cloud-base and cloud top showing typical environmental stratification,

and paths of 8z{p), fes(p); 8.(p), 8(p) for a typical cloud parcel rising from cloud-base, and diluting with the

environment (Sections 2(a) and (b)). fx and 8zs are read on the wet adiabats; 8z and & on the dry adiabats.

The isobaric #, or T difference between the dotted parcel curves is related to the parcel liguid water content as
- shown.

The solution of Eq. (19) sketched in Fig. 1 shows that the cloud parcel will reach 8y,
equilibrium (and 8 equilibrium since g7, = 0) with the environment at a level Z,, well
before descending back to cloud base, Z,. Further oscillations will not be considered. The
parcel ascends from cloud-base because the latent heat of condensation of its water content
g initially keeps &p) > 6(e), thus transporting sensible heat and liquid water upwards. It is
clear from Fig, 1 that
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Lo
C,7 > 8(p) — ble) . : - . (22)

d0u(p) _ 26(e)

since
dz dz

from Eq. (16)

so that 61.{p) — 0(e) is negative (from Egs. (22), and (14}). The #. transport {proportional
to 8.(p) — B(e)) for a model parcel, diluting at a uniform rate along its path, increases
negatively from Zy to Z,, and then decreases monotonically, after summing ascent and
descent, to zero at Z,; thus having a maximum at Z,. This 87, transport is an effective heat
transport, if the liquid water is re-evaporated (see Section 2(d)). The downward #; transport
by the parcel over its life-cycle arises through dilution with environmental air, whose
properties differ from the saturation adiabat through cloud-base: this process is irreversible
whatever the rate of dilution. ’

Clearly to calculate a layer mean #p transport with this approach would involve the
specification of 2 mass flux at all levels, and some averaging aver parcels diluting at different
rates (which could be taken to include such problems as * detrainment " or rapid dilution),
This may not be a desirable approach, since the area mean convective heat and mass
transports are controlled by larger scale boundary conditions. Instead it will be hypothesized
that the lapse rate structure of a field of non-precipitating clouds can be modelled using
a ' typical * parcel by the appropriate choice of a mean dilution parameter (to be deduced by
comparison with observations). Heat and mass fluxes will then be determined implicitly
by combining the lapse-rate model with time dependent boundary conditions above and
below the cumulus layer, and with budget equations (Sections 3 to 5).

{¢) Dilution scale length: S

Little is known thearetically about the factors influencing dilution or entrainment.
Simpson (1965), and others, have used a similar relationship to Eq. (17) for ascent

LdM 02
M d=z a
(where a is the radius of a cloud tower); and achieved some success using a 1-dimension

mode] with constant a in predicting the height reached by individual towers. Other models
of a convective element [e.g. Asal 1967; Kuo 1965)] have predicted

(23)

a
H
for a dominant cloud-size, where H is the depth of a layer of conditional instability. With

these two considerations in mind, § will be parameterized directly in terms of a depth
of a layer of conditional instability (e.g. Z, — Zp in Fig. 1).

1 E :
STH - . . . . {25)
where one would expect from Egs. (17), (23) and {24) that E ~ 0-4. .

a2 05 . . . .29

(d) Tmnsport equations for 8,

Taking f4 as a conserved quantity one méy write a flux equation (neglecting density
fuctuations) ' o
bgL D T '
Cp— = —— (p ‘o1 ) . . 26
Lo, 3z PEerW L) (26)

For the simple case of no horizontal transports or gradients of 8, and no mean vertical
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motion (W = 0). The ~ denotes an areal average over several clouds and the spaces
between them, and ' deviations from an areal mean. Using Eq. {14) to expand the left-hand
side of Eq. (26), and neglecting the local change of pressure, gives .

o8 LE 24

Y W 27
PS‘E"E:;,—I“: _DT—ADZ(PW L) . . @20

for a field of non-precipitating clouds in a statistically steady state in the sense that

o,
Yl 0 . . . . (28)
Eq. (27) simplifies further to

202G 29
P'at__'$(lo L) - - ‘ (‘)

Thus, the thermal modification of the mean atmasphere is related to the divergence of the
vertical transport of fg, if there is no change in storage of liquid water. The transport of
1, is dominated by the transport of (— qr) (Eq. Z2), so that one may say that the mean
atmosphere is modified even by non-precipitating convection, because water condensed
at one level is advected to ancther before evaporation, In this paper the simplification Eq.
(28) wilt be made: since frequently the change in storage of liquid water will be rather less
than the vertical advection.

As discussed in Section 2(b), the transport of #; by parcels over their life cycle is
downwards, whatever their rate of dilution. An area average transport is sketched in Fig. 2
for illustration: this is schematically the same as the transport by some mean model parcel.
Eqg. (29) indicates that the lower part of the cumulus layer is warmed, and the upper part
cooled by the convection; a process dictated by the condensation, upward advection and
evaporation of liquid water. This heat transfer is a destabilizing process, so that in the
absence of large scale subsidence, the cumulus layer will deepen until the onset of pre-
cipitation introduces further factors.

Z Z z Z
CLOUD TOP—-AZ, —+—-——fm— g —— ——— =z L2
' COOLING
Z
g TZ, T fCHARACTERISTIC — T — ————
q : LAPSE RATES
t WARMING | -
CLOUD BASE——"-] 7, — L om im e
j “ -
Fn&
L rm— s - ~
BC,W 8. ) w ]
'"ENTHALPY" THERMAL VERTICAL VELOCITY d,i
TRANSPORT STRATIFICATION  OF ENVIRONMENT - r
az STlFew ]

o —
Figure 2. Sketch of the ‘ enthalpy * transport pCp W78 for a field of non-precipitating clouds; the thermal
stratification; the parameterization of the modification of the mean atmosphere by the convection in terms of
the vertical motion of the air between the clouds; and the local temperature change induced by the convection.
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(e} Parameterization of convection by mass transport

Eq. (29) describes the convective transports concisely, but not the mechanism whereby
the clouds modify the mean atmosphere, which is clearly through the circulation they
induce in the environment (Fraser 1968; Haman 1969). Neglecting radiation, one may
define the environment as the region conserving 9.

Dé(e)
Dt

af(ey
3=

= (),

28(e)

Therefore
0z

— Wie) —
for Vpb(e) = 0. In cumulus convection where the area cover of active convection and
typical perturbation temperatures in clouds are small, the distinction between &) and §
is negligible,
Theref wie)
refore T hd
eretor ot © 3z
The environmental motion may be regarded as the sum of a large scale W and a convective

component W¥, B
Wie) = W 4- W+

This parameterW* is also sketched in Fig. 2 for illustration. If W(c) is a mean cloud velocity
and « a mean fractional cloud cover

a[Wie) — W] = —(1 —2)W™

The lapse rate model (Section 3) only requires values of 6, so that W* only appears in the
time dependence as the product W*I'. However, budget equations of both dry and
cumulus layers require the heat flux through cloud- base due to the cumulus clouds. This
is, after simplification

(W78 = —Wo* [05(c) — Bl : : . (30)

where the suffix b denotes a cloud-base value.

(f) Experimental evidence

Data from observational field programs is beginning to become available, The 5-day
{22-26 June 1969) mean temperature sounding, and convective heat flux, deduced from
the heat budget within the BOMEZX array for a period of undisturbed tradewind convection
{Rasmusson 1971; Holland and Rasmusson 1972, kindly supplied by the authors) is shown
in Fig. 3. The authors concluded that the enthalpy transport by the convection in the
cumulus layer requires an upward liquid water flux. Fig. 3 closely resembles Fig. 2 above
cloud-base, and Fig. 7 below, although the curves are continuous through cloud-base,
which may result from the time averaging.

3. LAPSE-RATE MODEL FOR CUMULUS LAYER
{a} Model

A two-layer structure for the cumulus layer will be assumed (Fig. 4): the layers having
different lapse-rates and corresponding with the regions of warming and cooling by the
convection. This choice of levels-in the model (2, Z,, Z, in ¥Fig. 4) corresponding to
levels in the atmosphere which have physical significance (and therefore move) complicates
the budget equations (Section 5); but it results in much greater realism and precision in
only a 3-level model, than could be achieved with many levels at arbitrary pressure surfaces.
The boundary condition Zp, 85, Z,, 0, are here assumed known (see Sections 4 and 5), and
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Figure 3. 3 day mean sounding, and convective enthalpy transport within the BOMEX array (1969} for a
period of undisturbed tradewind convection (1o be published; Helland and Rasmusseon 1672),
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Figure 4, Two-layer lapse-rate model for the cumulus layer.

from these will be predicted instantaneous values of I, 42,, I, 47, Fig. 4 defines
8, — 8y =T42 =4z, 1,42, . . . 3D
Zz - Zb - AZ == AZ, + AZz . - - (32)

but two further physical equations are needed (Sections 3(b) and (c)).

It is being hypothesized that a state of dynamic equilibrium exists between the con-
vection and the large-scale fields, at least on time-scales longer than the growth time of
the individual cloud. This is a lapse-rate adjustment approach, but rather than use an
unrealistic wet adiabat, a lapse-rate structure will be constructed which is consistent with
the dynamics and thermodynamics of the non-precipitating cloud parcel discussed in
Section 2. As in Fig. 1, it will be supposed that this model cloud parcel rises from cloud
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base Zp» {where its vertical velocity and temperature perturbation will, in this section, be
neglected), to a maximum height Z,, and then sinks back to equilibrium at Z;, having
evaporated all its liquid water. Thus the supposed change in lapse-rate from I3 to I,
corresponds to the change from warming to cooling by this model parcel life cycle. Further
the model lapse-rates are consistent with a vertical 1-dimension kinetic energy equation
for the parcel.

{b) Kinetic energy equation

An upper limit to the height of the overshoot is given by the familiar method of
equalizing positive and negative areas on a tephigram between sounding and parcel 8 path.
However, there will always be a partition of the available potential energy into both hori-
zontal and vertical scales of motion, and with dilution processes, there is a transfer of kinetic
energy to sub-cloud ( ‘turbulent’) scales. A dissipation parameter D will be introduced
to approximate these processes which reduce the maximum height attained by a cloud
parcel. The available potential energy expression [g(8(p) — 8/0)dz will also be simplified
by neglecting the variation of # in the denominator, and the virtual temperature correction,
though often not negligible, will be ignored. One then obtains a simple area-type formula
(see Fig, 5).

B(p),g

Figure 3, Model stratification and cloud parcel path on ascent. Shaded area corresponds to maximum positive
available potential energy.

31 — D)(Ie — T)AZ(AZ, + 8Z) = YT, — T'e)(4Z, — 82 . (33)
where 87 = AZI(FC - P])/(Fz —Ie)

and I'c = d8(p){dz for the cloud parcel on ascent, is defined through Egs. (20), (21) and

(25). H in Eq. (25) will be taken as 47;.
1_E
S A4z,

Preliminary calculations with the lapse-rate model suggest E ~ 04 - (-5. The dissipation

(34)
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parameter D can be related to the dilution scale length S through a one-dimensional
kinetic energy equation of the type used with some success by Simpson et al. {1963).

(c) 85 (p) equation

The integration of Eq. {19) for the ascent of a parcel from cloud base Zi to Z,, and then
for the descent to £, with the conditions that #1.(p) = #1(e) at Z (an approximation) and
after descent to Z, {the imposed condition — see below), yields the equation

Iy _ 1 — 2exp(4Z4S) + exp(24Z,S)

r, 1 —exp(—A4Z,/S)

Expanding 1n powers of AZIS, AZ,[S, the first two non-zero terms in numerator and
denominator give sufficient accuracy, when, substituting Eq. (34)

5 E(AZ,jAZ)Y[1 + E(42Z,]AZ, )]
T, 1—Ej2
The condition #L{p) = Br(e) on descent to Z, {as in Fig. 1) is the crucial constraint

which connects stratification ({7, I7) to the model cloud parcel path (see Section 3 (a)).
The dependence of Eqg. (35) on the dilution parameter E is shown in Table 1.

(35)

TABLE 1. Revarmion peTwieN AZJ47, anp I')f T (<1)

42,147,
I,r, E =04 E =05
1-0 086 1-00
05 1-16 1-35
{-1 244 2-82

Values of I,/ I, of 0-5 and 0-1 are typical of diurnal convection over land, and beneath an
inversion, respectively.

(d) Solution of lapse-rate equations .

Eqs. (31), (32), (33), (34), (35), (20) and (21) are simultaneously soluble given 4Z, T,
values for E, IJ, and the environmental water vapour soundmg {since the water vapour
budget is not being modelled here). The form of the solution is indicated in Table 2 in
which values of I', I'c, E and D are assumed. I must be greater than I'c for a physical
solution. As I' — I'c increases, I'; decreases slowly and I, increases rapidly, while the
ratio of the depth 4Z, to 4Z, increases. The last line of figures is not inconsistent with
convection beneath an inversion, despite the omission of radiative transfers, which in this
case are usually important. The values change slowly as E, D are varied.

"TABLE 2. SIMPLE SOLUTIONS FOR THE LAPSE-RATE MODEL

K k1 Az,
E D e Iy r, r, A7,
04 0-3 4-0 43 33 5-8 1-10
0-4 05 4-0 30 2-8 79 1-35

04 03 +0 65 2:0 160 213




190 . A. K. BETTS

This lapse-rate mode!l can be tested diagnostically. With time dependent boundary

_conditions above and helow, the model must be solved simultaneously with budget equa-

tions (Section 3) for prognosis. In the next Section the way in which the cumulus layer is
linked to the Earth’s surface through Zp, d, and the sub-cloud layer, is discussed.

4. THE sUB-CLOUD LAYER
(a) Model structure

The specification of 05, Z, clearly involves the heating of the sub-cloud layer and height
of cloud-base. Dry convection and cumulus convection have both similarities and dif-
ferences. A madel dry parcel path, satisfying Eq. (16) for # = 8, and a corresponding heat
flux curve are shown in Fig. 6 (analogous to Figs. 1 and 2). If virtual temperature effects
are neglected, the energetics and enthalpy transport are related, since gr, = 0. However, a
lapse-rate mode! for the dry layer, similar to Section 3, is as a result less simple. Whereas
in the cumulus layer parcel temperature perturbation and vertical velocity at the base of the
layer can as a first approximation be neglected, so that the structure depends on the con-
densation (and dilution) process in the layer itself; in the dry layer, the surface super-
adiabatic layer determines the thermal structure above, since there is no latent heat release.
Correspondingly however, the simpler model of a sharp inversion above a dry adiabatic.
layer (Fig. 7) will be adequate here, since typically Z; — Zs < Z; (Fig. 6): that is, models
of the ' constant flux layer " and its coupling to the atmosphere above will not be explored.

LAYER

SUPERADIABATIC LAYER
8ie), 6(p) peo,wh'

HEAT FLUX

Figure 6. Thermal stratification, typical parcel path, and heat flux in a dry convective layer.

pA z
T-d8/dz
A8 +
A, Zs T 55 W,
g, & ,B'CPW

Figure 7. Simplified model stratification and heat flux for a dry cenvective layer.
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For purely dry convection the inversion marks the top of the convective layer from

the surface, and can be raised physicaily by cooling through the overshoot with dilution of

convective elerments. This process will be parameterized in a very simple manner {Eq. (38)).

For the sub-cloud layer, the observed stable transition laver at cloud-base (Ludlam 1966
and others) will be identified with this inversion.

(b Dy model

It is necessary to model purely dry convection first, since the dry layer may not
extend to the lifting condensation level. Similar models have been discussed previously by
Ball (1960) and Lilly {1968). Symbols are defined in Fig. 7, and radiative transfers are
neglected.

(i) Heat budget:

dé
Fpo — Fao = ZspCyp d_‘i : . . (36)
3
" Ps P
where pl dp =J pdp
« Po ‘ Py
(it) Inversion rise:
dZ, -
Foo = —(52 = WiaCpat . . )
(11i) Closure equation: parameterizing the dry convection,
Fso = —kFyo . . . . (38

This simple parameterization is an extension of Ball (1964), who showed that with no
dissipation of kinetic energy, & = 1. Lilly (1968), and Deardorff, Willis and Lilly (1969)
from laboratory experiments have suggested that the local dissipation of kinetic energy is
so great that the parameter k s near zero. However, the author considers this doubtful
from a comparison of the predictions of the present model and observations. k is here the
only parameter representing the physics of the dry convection, and will be taken as constant.

(iv) Equation for 48:

AB = gs - gd
440 _ JZS dig '
g (dt Ws)r ~ & . . . (39)

where I'is 34/dz above the inversion (assumed constant)
Egs. (36) to (39) can be solved for Fe, fa, 46, Z; in terms of Fo, k, I, Wi, from an
initial condition.

(c) Solutions
dfa (1 +k)F

& G . ) . (40)
(1} Ws = 0: Combining Eq. (36) to Eq. (39) gives
14k dZs dZs d48
( L )pszw = Pl — sy (41)
If the wvariation of § is neglected this is a homogeneous differential equation, solution
48 = RTZs/(1 + 2R) . . . . (32

This is an important relationship which indicates a connection between the presence of an
inversion (or more stable layer) and a non-zero value of k.
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) 46 =0. if k=0
Substituting Eq. (42) in (37) and (38) gives (for Ws = 0), and a mean value of p

( S) (1 +2k)F

Note that the dry layer deepens rapidly at first when Z5 is small and at a decreasing rate
as Z; increases.

(1) Wy < 0: Large-scale subsidence becomes dominant in the equations once
dZs|dt < (—W;), and a steady state inversion height is attamed provided I', Fog are
constant, when

(43)

Zs = (1 + RYFou/pCal — W) T . . . (44)
and
A0 = phIZs[p:(1 + k). . : . (45)

Eq. (45) is similar though not identical to Eq. (42). The steady state inversion height is
proportional to Fyg, and inversely proportional to (—W;) and I". There will be no clouds
provided the lifting condensation level of surface air is above the steady state Z,.

(dy Sub-cloud layer model

It is convenient to extend this simple dry model to the sub cloud layer by incorporating
an additional parameter Wy*, a cumulus mass transport at cloud-base. The' lapse-rate

model requires only
dgb _ de & *
T ( pTa Wy — )F | . . . (46)

but W* also appears in the cloud-base heat flux (Eq. {30)). The sub-cloud model can be
solved for We* by supposing that the inversion topping the dry layer is the transition layer
at cloud-base; determined to first approximation by the surface temperature and mixing
ratio. This is consistent with observation, This simple extension is possible because, if the
steady state height of the inversion deduced from the previous model is above Z, then a
cumulus induced increase in subsidence (and therefore warming) above cloud-base to
{(Wp + Wp*) can reduce the steady state inversion to Zp. Mathematically let

Zs =2y . . . N CY)
and replace Wi by Wp - Wi

This transformation is exact, pr0v1ded 8p(c) in Eq. (30) is approximated by fq, when, JUSt
above the inversion {Fig. 8)

Fug = gCuW*d8 . . . . (48)

& @ B, oG,

Figure 8. Simplified model stratification and heat flux for a sub-cloud layer.
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The budget equation {36) is changed only by Eq. (47) and Eq. (37) and Eq. (39) become

dZ .
Fsg = _(EE —_ Wb - Wb*')ﬁbcrdg B " . (49)
ddﬁ'_ dZy - | diy . .
o= (E — W, — W;"‘)FI - (50)

Closure is still necessary: Eq. (38) will first be used again, but an alternative will also be
proposed, that of specifying 48 (see Eq. (53)).

(e) Solutions

Given Zu(t), Eqs. (36), (38), (47), (49) and (50} can be solved for Wp*,
(1) Zp constant: The solutions are similar to the case Zs constant.

86 = kpI' Zy/(2 - k)ps . . . (51)
—(Wh + Wo*) = (1 + BYFo/aCp I\ Zs . . . (52)

Eq. (52) determines W5*, and through Eq. (46), dfs/dt, needed to predict 8, for the lapse-
rate model. As subsidence (—W3) increases, (— W5*) decreases and can become zero,
when the dry model of Section 4(b) is recovered. Conversely mean ascent increases (— Wp*)
and the heat transports In the cumulus layer.

(i1} Z» not constant: Exact solutions depend on the form of Zu(t). One simple approxi-
mation is to neglect d4 ¢/dt in Eq. (50} compared to I} dZ/dt (see Eq. (53)), giving simply

dfy  dba
rFr (53)
This is exactly true for Eq. (52): here, Eq. (53) expands to
dZs - *) 1 dfs )
(E—Wb—wb’ —‘ITIE; . . o)

showing that rising cloud-base acts in the same sense as subsidence, to reduce the cumulus
mass flux.. Eq. (54) is also a valid simple parameterization for the lower boundary of a field
of cumulonimbus. It reduces in the simplest case to the boundary layer convergence
hypothesis:

Wp + Wo* = 0

(f) Discussion of closure

k in Eq. (38) parameterizes the dry convective process and closes the model. Some
observational values for typical afternoon convective soundings over land in the Tropics
(taken during the Venezuelan International Meteorological and Hydrological Experiment
1969: VIMHEX) indicate a consistent set of values to be A48 ~ 1:2°K, Z ~ 1500m,
I ~3-8°Kkm™, giving k ~ 1/4. A similar value of 1/4 was reported by Lenschow and
Johnson (1968), significantly more than the value of 01 obtained in laboratory experi-
ments by Deardorff et al. (1969).

A constant value of k for different W5*, Zp can only be a simplification, and a simple
alternative to Eq. (38) for closure exists, that of specifying, for all Z;

A8 = I,Z/5 . . . . (35)

which 1s consistent with Eq. (51) and k ~ . From Eqs. (36), (47), {49), (50), one obtains,
neglecting the variation of p
( 3dZy -

—_— . *
i@ W 'Wb)

5Fy

TGz 0
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which is similar to Eqgs. (52) and (54). The specification of 48 for the transition layer at
cloud-base is logical, since this is a mechanism of control on the convective mass flux into
the cumulus layer, as well as a consequence of overshoot of dry convective elements
‘trapped ’ in the sub-cloud layer.

In conclusion, the time dependence of 8, is specified by Egs. (46) and (36); and Zy is
considered specified by the surface variables. The surface boundary conditions will not be
discussed in this paper - formal closure can be achieved by relating Fyg to the difference
between surface potential temperature and dry layer fz. Over the sea the surface tempera-
ture might be taken as known, but over land the entire surface problem and water vapour
budget must also be solved simultaneously. A simple formulation is outlined in Betts (1970).

5. UJPPER BOUNDARY CONDITION

The time change of &, at the top of the cumulus layer in this simple model with no
horizontal advection or radiation is given by (see Fig. 4)

dé, _ {dZ, -
e ( aE \V;) . . . . 3D

The rise of the cloud layer top, Z,, involves the budget equations discussed in the next
Section.

6. Bubpcer EQUATIONS FOR THE CUMULUS LAYER

The deepening of the cumulus Jayer arises physically from the downward transfer of
“enthalpy’, Fior, by the clouds (Section 2). The budget equations for the two layers are
(symbols in Fig. 4)

d Fy F dz dZ L.
@ ). 9pdz = Ef — f‘} + 6.5, jr—l — Bopn —dtP - f W pdz . {58)
zp
d Az dZ, dZ 2
EJ dez + gzpz ai —_ 91!51 _CH} _J szﬁdz . . (59)
21 Z1

This pair of equations, like many prev1ously, is most conveniently handled in pressure
co-ordinates, but again only the nature of the solutions will be indicated, and so the vertical
vartation of density will be neglected. For convenience also W is assumed constant in the
cumulus layer.

Define average variables

1 N —1
f dz = 47,4
zp
J Bz = AZ,5
z1
where i — Gy = 01 — 7= 14z,

i 8 =8,-8 =4r,42,
Combining these definitions and Eq. (58) for 5, W constant
Fog Fugy dfp dZ, . )} AZ2dn,
L/ _ =
Cy  pC» dt ( dt W 2 dr
I, dT/dt and 4Z, are determined through the lapse-rate madel; Zy and Fug (Eq. (48)) by

the sub-cloud layer, so that Eq. {60) may be regarded as determining Fs, . In fact Eq. {60)
can be manipulated to the form

Fuw Fis f *
b _ —_ W r . . . 61
ﬁCp ﬁcj’) (Z) Ldz ( )

= 47, [ (60)
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where
(z*_ Zy) d_Pl
I dt

indicating how the convective mass flux is specified in terms of the lapse-rate changes, as

mentioned earlter.
The substitution of Eq. (60) in Eq. (59), and the further use of the above definitions
leads to an equation for dZ,/dt.

Wz = We* —

Z dé{; de
(r, —rpaz, =+ 5 #AZ( +Wr — L )
{AZ2dn dry | Az, dT Fw)
K ( 7 a TALAZ s e ) 62)

This equation represents the lifting of the mid-level of the cumulus layer through the down-
ward transfer of heat. It is clear that rising cloud-base, and subsidence both reduce dZ, /dt.
dfp/dt is essentially related to dfq/dt and the surface heating (Eqgs. (46), (54) or (56)).

The second set of terms on the right-hand side can under some circumstances become
small (e.g. I}, I, are constant when T, I'c are constant, and Fpe is typically rather less
than Fie, ), when Eq. (62) simplifies to

dz
(El — )(F2 - T'yAZ, = —AZW*T,

dZ,}dt has an additional dependence on W as well as through Wy* (itself W dependent).
Subsidence for example reduces dZ,/dt in both ways, and a steady state solution can exist
for Z,.

In general, because of changes in I'|, I',, one must solve simultaneously the lapse-rate
model, the boundary condition above the cumulus layer, Egs. (57}, and {(62) to find values
for

dZ,jdt, dZ,/dt and dT/dt, dT,jdt, dTyfdt  aiven
dsfdt, dZpidt, Fo, Ty, W(Z) and I,

The range of independent variables is wide and further computations using atmospheric
data are necessary to see whether this simple model predicts bounded solutions in alt -
ranges of meteorological interest.

7. CoNcLusION

This paper has outlined a simple systern of equations for the prediction of the time
development of a convective layer, until the onset of precipitation. Many sclutions remain
to be investigated ; and both radiative transfers and horizontal advection have been omitted.
Only the heat transport has been discussed here: the water vapour transport can be modelled
in an analogous manner, once Zp, Z, and Z, have been determined. An outline of a pre-
liminary set of equations has been presented in Betts (1970).

To summarize, this paper-has presented four main themes:

(i) The thermadynamicsand dilution processes of non-precipitating convection, which
predict a downward transfer of sensible heat in the cumulus layer.

(ii) A lapse-rate model, which relates a characteristic stratification to a model cloud
parcel.

(i) A sub-cloud 1ayer madel, which specifies the lower boundary conditions to the
cumulus layer, and shows the dependence of convective mass transpart through cloud-base
on the large-scale mean vertical motion field, cloud-base variations and the surface sensible
heat flux.

(iv) Budget equations for the cumulus layer, which combine with (i}, (i), and an
upper boundary condition, to predict the cumulus heat transport and the deepening of the
cumulus layer.
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