Reinventing Hydrometeorology using Cloud and Climate Observations

Alan K. Betts

akbetts@aol.com http://alanbetts.com

Co-authors:
Ray Desjardins, Devon Worth
Agriculture and Agri-Food Canada
Ahmed Tawfik
NCAR


Symposium in Honor of Eric Wood Princeton University

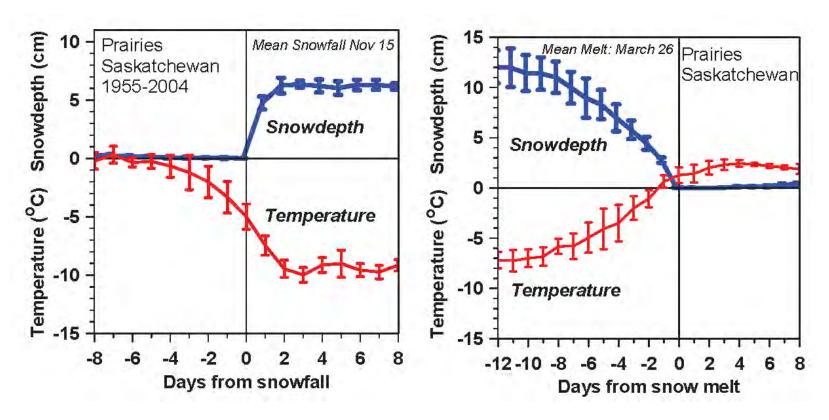
June 2-3, 2016

Reinventing Hydrometeorology

- Betts (2004): Understanding hydrometeorology using global models. (Now Observations)
- Canadian Prairies: northern climate
 - Cold season hydrometeorology
 - Snow is a fast climate switch
 - Two distinct "climates" above and below 0°C
 - 5-mo memory of cold season precipitation
 - Warm season hydrometeorology
 - T and RH have joint dependence on radiation and precipitation on monthly timescales
 - 2-4 months precipitation memory
 - System Coupling parameters (observations)

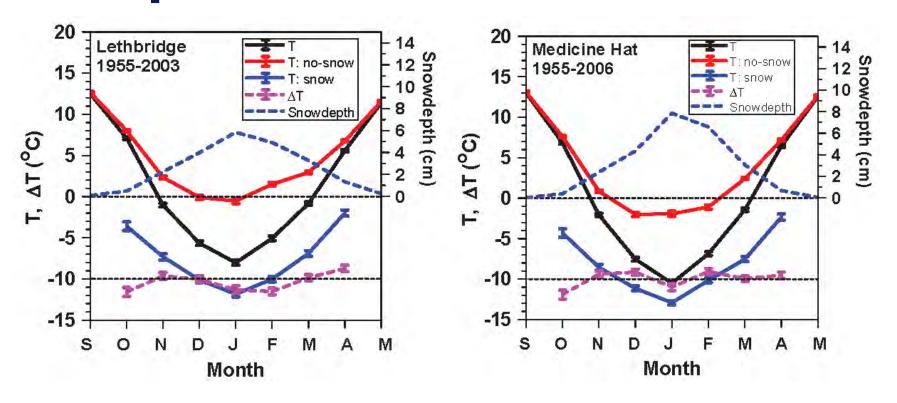
15 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955; BSRN data
- Albedo data (MODIS/CCRS: 250m)


http://alanbetts.com

- Betts, A.K., R. Desjardins and D. Worth (2013a), Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118,* 1–19, doi:10.1002/jgrd.50593
- Betts, A. K., R. Desjardins, D. Worth, and D. Cerkowniak (2013), Impact of land use change on the diurnal cycle climate of the Canadian Prairies, J. Geophys. Res. Atmos., 118, 11,996–12,011, doi:10.1002/2013JD020717.
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies. *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021168
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014), Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos. 119, 13305-13326, doi:10.1002/2014JD022511
- Betts, A.K., R. Desjardins, A.C.M. Beljaars and A. Tawfik (2015). Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front. Earth Sci. 3:13. http://dx.doi.org/10.3389/feart.2015.00013
- Betts, AK and A.B. Tawfik (2016) Annual Climatology of the Diurnal Cycle on the Canadian Prairies. Front. Earth Sci. 4:1. doi: 10.3389/feart.2016.00001
- Betts, A. K., R. Desjardins and D. Worth (2016). The Impact of Clouds, Land use and Snow Cover on Climate in the Canadian Prairies. Adv. Sci. Res., 1, 1–6, doi:10.5194/asr-1-1-2016

Diurnal Climate Dataset


- Reduce hourly data to
 - daily means: T_m, RH_m, OPAQ_m etc
 - data at $T_{\text{max/min}}$: T_x and T_n
- Diurnal cycle approx. climate
 - $-DTR = T_x T_n$
 - $-\Delta RH = RH_{tn} RH_{tx}$
- Full diurnal Cycle: ≡ monthly
 - 'True' diurnal ranges (Critical for winter)
 - Energy imbalance of diurnal cycle

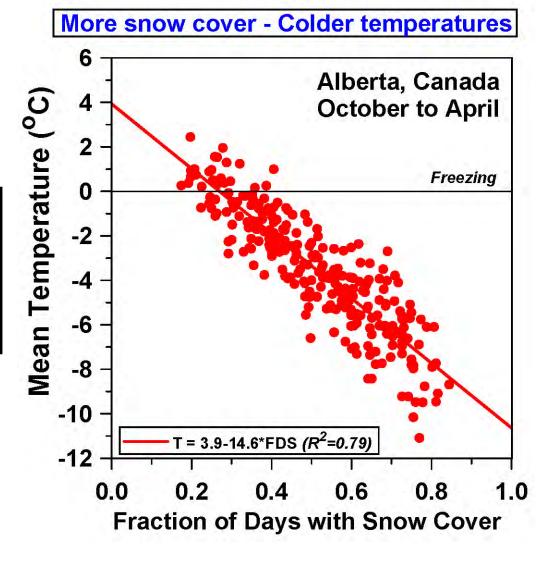
Snowfall and Snowmelt *Winter and Spring transitions*

- Temperature falls/rises about 10K with first snowfall/snowmelt
- Snow reflects sunlight; shift to cold stable BL
 - Local climate switch between warm and cold seasons
 - Winter comes fast with snow

Impact of Snow on Climate

Separate mean climatology into days with no-snow and Snowdepth >0

 $\Delta T = T:$ no-snow -T:snow $= -10.2(\pm 1.1)$ °C


Interannual variability of T coupled to Snow Cover

- Alberta: 79% of variance
- Slope T_m -14.7 (± 0.6) K

10% fewer snow days

= 1.5K warmer

on Prairies

Surface Radiation Budget

- $R_n = SW_n + LW_n$
- Define Effective Cloud Albedo

ECA = - SWCF/ SW_{dn} (clear) $SW_n = (1 - \alpha_s)(1 - ECA) SW_{dn}$ (clear)

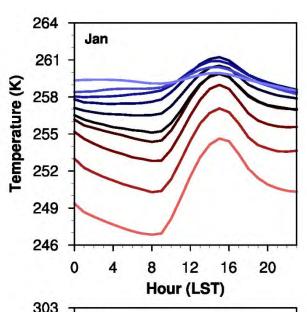
Reflected by surface, clouds

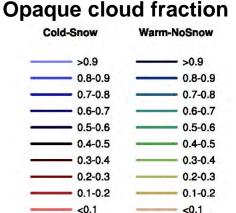
MODIS Calibrate Opaque Cloud data with Baseline Surface Radiation Network (BSRN)

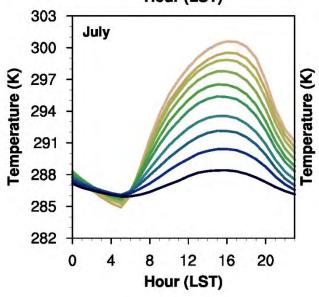
Diurnal cycle: Clouds & Snow

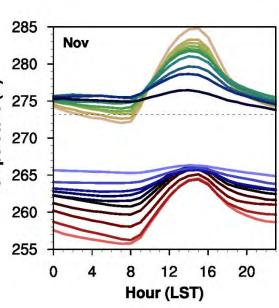
Canadian Prairies 660 station-years of data

Winter climatology

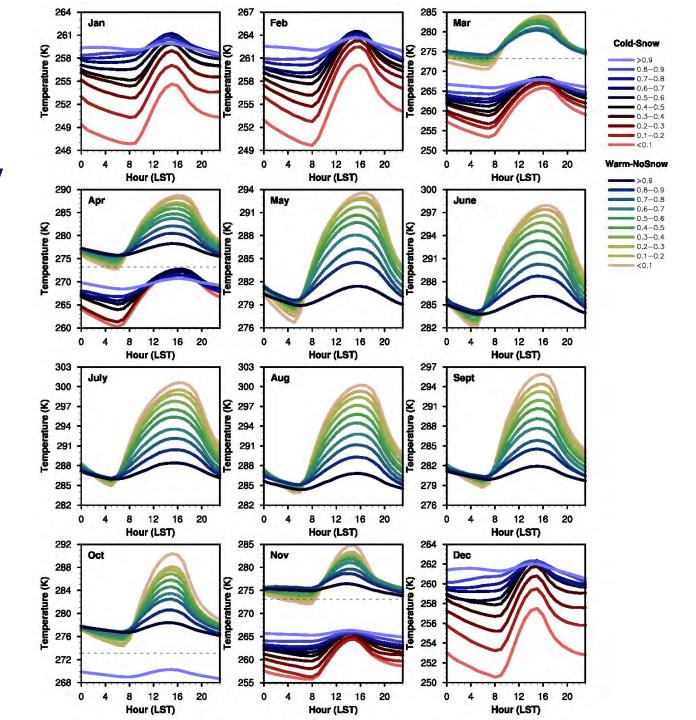

- Colder when clear
- LWCF dominant with snow
- Stable BL


Summer climatology


- Warmer when clear
- SWCF dominant: no snow
- Unstable daytime BL


Transition months:

- Show <u>both</u> climatologies
- With 11K separation
- Fast transitions with snow
- Snow is "Climate switch"



Monthly
diurnal
climatology
(by snow
and cloud)

Impact of Snow

- Distinct warm and cold season states
- Snow cover is the <u>"climate switch"</u>
- Prairies: $\Delta T = -10^{\circ}C$ (winter albedo = 0.7)
- Vermont: $\Delta T = -6^{\circ}C$ (winter albedo 0.3 to 0.4)
- Snow transforms BL-cloud coupling
 - No-snow 'Warm when clear' convective BL
 - Snow 'Cold when clear' stable BL

Warm Season Climate: T>0°C (April – October with no snow)

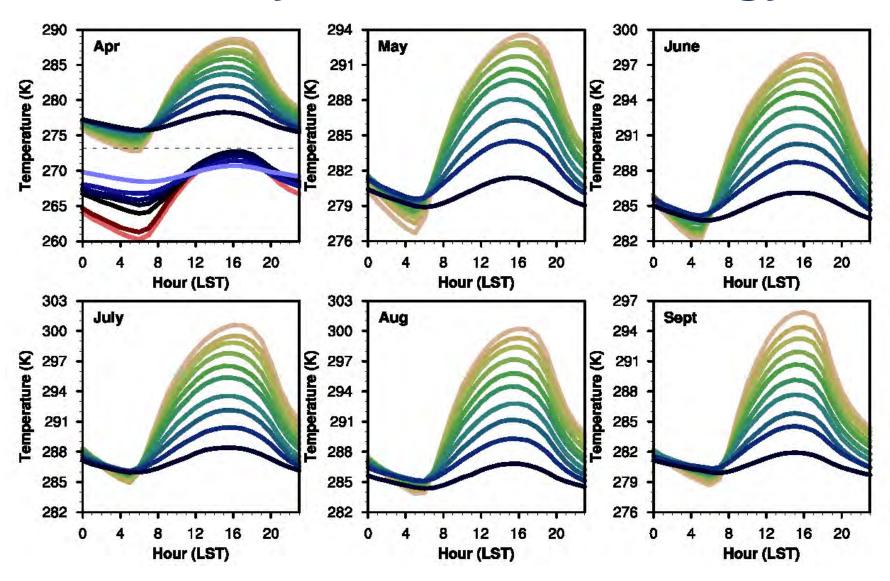
- Hydrometeorology
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
 - Cannot do coupling with just T & Precip!
- Daily timescale is radiation driven
 - Night LW_n; day SW_n (and EF)
- Monthly timescale: Fully coupled
- (Long timescales: separation)

Warm Season Diurnal Climatology

Averaging daily values (Conventional)

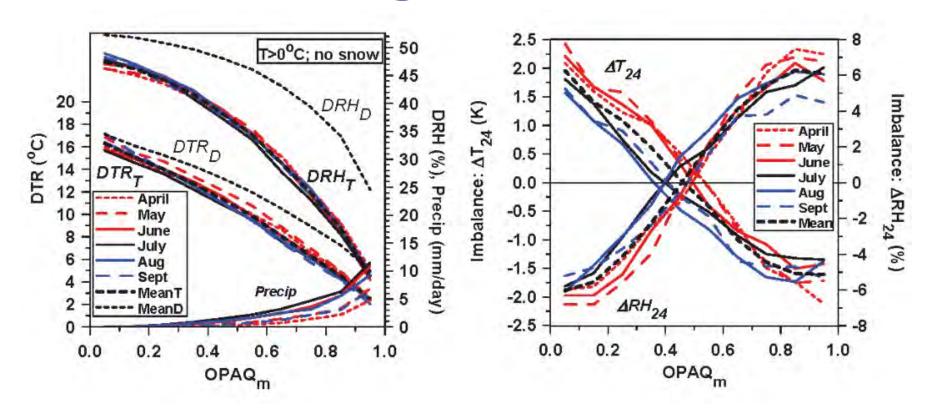
$$DTR_{D} = T_{xD} - T_{nD}$$

$$DRH_{D} = RH_{xD} - RH_{nD} \text{ (rarely)}$$

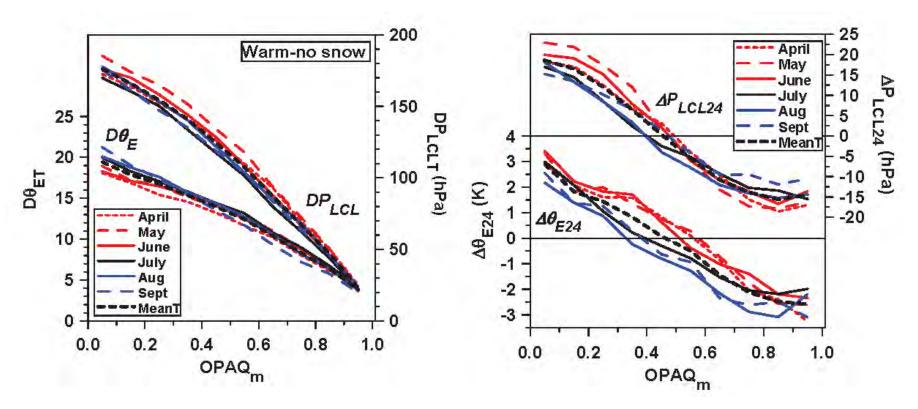

• Extract mean diurnal ranges from composites ('True' radiatively-coupled diurnal ranges: damps advection)

$$DTR_{T} = T_{xT} - T_{nT}$$

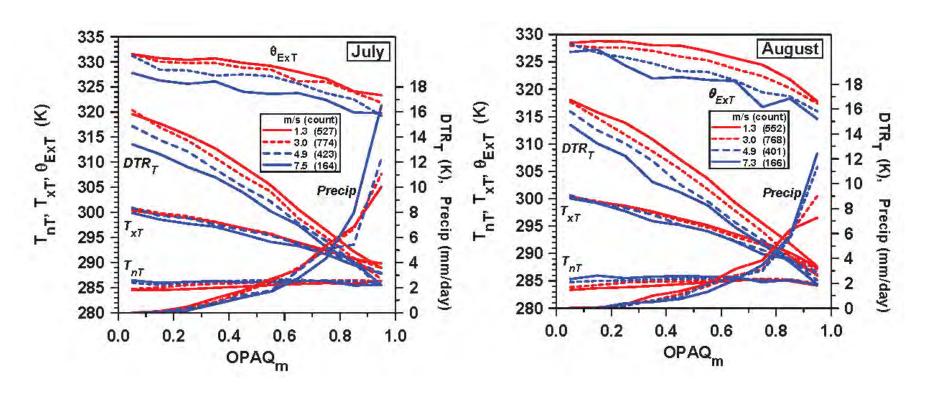
$$DRH_{T} = RH_{xT} - RH_{nT}$$


Q1: How are they related? DTR_T < DTR_D

Monthly Diurnal Climatology


Q2: How much warmer is it at the end of a clear day?

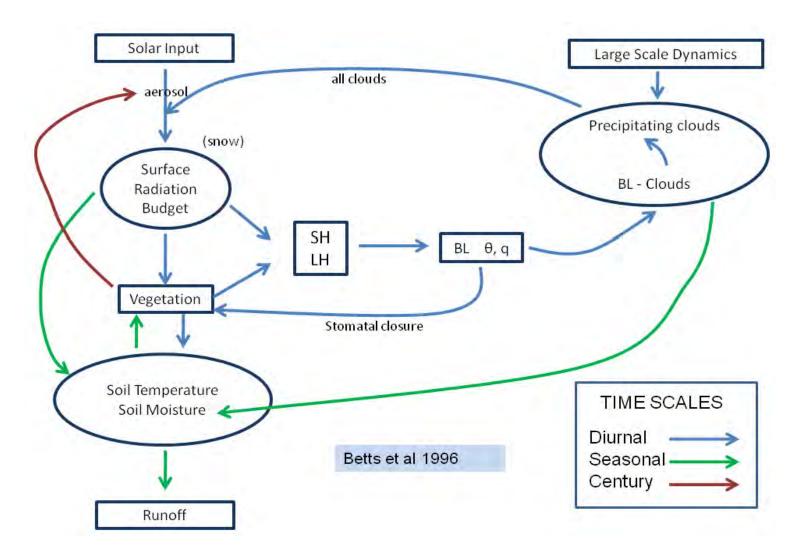
Diurnal Ranges & Imbalances


- April to Sept: <u>same coupled structure</u>
- Q1:DTR_T, DRH_T < DTR_D, DRH_D <u>always</u>
- Q2:Clear-sky: warmer (+2°C), drier (-6%)

Diurnal Ranges & Imbalances

- April to Sept: same coupled structure
- Clear-sky: θ_E (+3K), LCL higher (+18hPa)

Coupling to Wind



- Low wind-speed: DTR increases
 - T_n falls; T_x , θ_{Ex} increase; (P_{LCLx} falls)
 - Precip. increases in mid-range

Warm Season Climate: T>0°C (May to September: no snow)

- Hydrometeorology
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
 - Cannot do <u>coupling</u> with just T & Precip!
- Monthly timescale: Fully coupled
 - Use regression to couple anomalies

Fully coupled system

What are the coupling coefficients in the "real world"?

Monthly Regression on Cloud and lagged Precip. anomalies

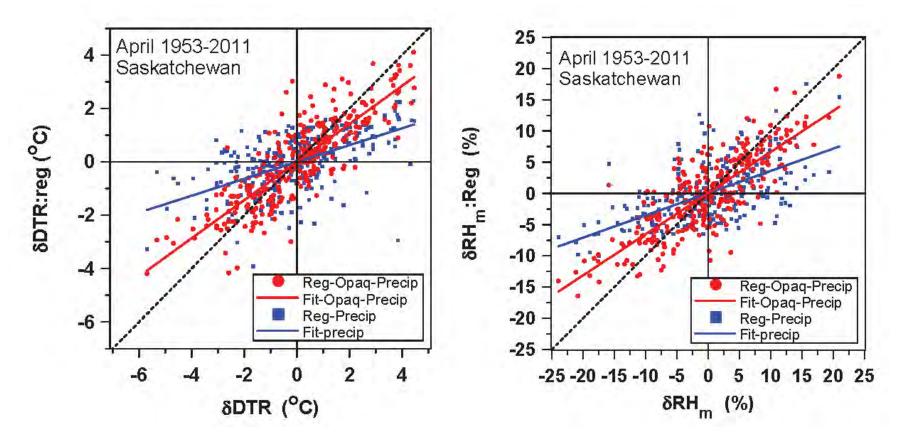
- Standardized monthly anomalies
 - opaque cloud (CLD)
 - precip. (PR-0, PR-1, PR-2): current, previous 2 to 5 months

e.g.

```
δDTR = K + A*δCLD + B*δPR-0 + C*δPR-1 + D*δPR-2 ...

(Month) (Month-1) (Month-2)

Soil moisture memory
```


<u>April:</u> memory of entire cold season (snow, soil ice) back to November freeze
<u>June, July:</u> memory of moisture back to March

April: Memory of Precip. to November

1953-2011: 12 stations (619 months)

Variable R ² =	δDTR 0.67	δΤ _x 0.48	δRH _n 0.66	δP _{LCLx} 0.66
Cld-Apr	-0.52±0.02	-0.78±0.04	0.76±0.03	-0.93±0.04
PR-Apr	-0.04±0.01	0.00±0.03	0.14±0.02	-0.13±0.03
PR-Mar	-0.13±0.02	-0.25±0.04	0.25±0.03	-0.30±0.04
PR-Feb	-0.09±0.02	-0.15±0.05	0.19±0.04	-0.24±0.04
PR-Jan	-0.10±0.02	-0.20±0.04	0.19±0.03	-0.22±0.04
PR-Dec	-0.06±0.02	-0.07±0.05	0.20±0.04	-0.24±0.04
PR-Nov	-0.09±0.02	-0.14±0.04	0.08±0.03	-0.12±0.04

April Climate

- Regression on Opaq, Precip: R² ≈ 0.7
- Regression on Winter Precip: R² ≈ 0.35

Monthly timescale: Regression

1953-2011: 12 stations (615/month)

δDTR anomalies

Month	K	A (CLD)	B(PR-0)	C (PR-1)	D (PR-2)	R ²
May	0±0.02	-0.61±0.02	-0.27 ± 0.02	-0.17±0.03	-0.06±0.05	0.74
Jun	0±0.02	-0.54 ± 0.04	-0.22±0.02	-0.18±0.02	-0.05±0.03	0.68
July	0±0.02	-0.57 ± 0.03	-0.24±0.02	-0.15±0.01	-0.12±0.02	0.68
Aug	0±0.02	-0.67 ± 0.02	-0.26±0.02	-0.13±0.02	-0.03±0.02	0.80
Sept	0±0.02	-0.71 ± 0.02	-0.30±0.02	-0.12±0.02	-0.03±0.02	0.84

Monthly timescale: Regression

1953-2011: 12 stations (615/month)

Afternoon δRH_n anomalies

Month	K	A (CLD)	B(PR-0)	C (PR-1)	D (PR-2)	R ²
May	0±0.02	0.65±0.03	0.40±0.03	0.25±0.04	0.20±0.06	0.72
Jun	0±0.02	0.66±0.03	0.32±0.02	0.21±0.03	0.11±0.04 **	0.67
July	0±0.03	0.63±0.04	0.36±0.03	0.27±0.02	0.13±0.03 **	0.61
Aug	0±0.02	0.61±0.03	0.42±0.03	0.22±0.02	0.10±0.02	0.75
Sept	0±0.02	0.61±0.02	0.39±0.03	0.24±0.02	0.05±0.02	0.78

^{**}June, July weak memory back to March

MJJAS merge: coupling coefficients

T _x	(±0.01) CLD -1.01 PR-0 -0.07 PR-1 -0.14 PR-2 -0.03 (R ² =0.62	Maximum temp. Falls strongly with cloud Falls a little with precip.
I _m	CLD -0.70 PR-0 0.03 PR-1 -0.08 PR-2 -0.02 (R ² =0.48)	SWCF (negative) No precip dependence
T _n	CLD -0.36 PR-0 0.17 PR-1 0.0 PR-2 0.02 (R ² =0.16)	Minimum temp. Falls with cloud Increases a little with precip.
DTR	CLD -0.65 PR-0 -0.24 PR-1 -0.15 PR-2 -0.05 (R ² =0.76)	Highest correlation Falls strongly with cloud Falls with precip. (memory)

MJJAS merge: coupling coefficients

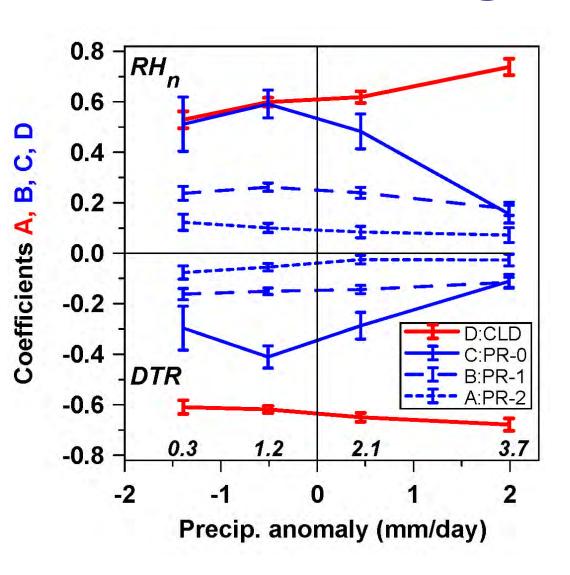
T_x	(±0.01) CLD -1.01 PR-0 -0.07 PR-1 -0.14 PR-2 -0.03 (R ² =0.62)	RH _n	(±0.01) CLD 0.63 PR-0 0.37 PR-1 0.24 PR-2 0.10 (R ² =0.71)	Minimum RH Increases with cloud Increases with precip (Memory)
T_{m}	CLD -0.70 PR-0 0.03 PR-1 -0.08 PR-2 -0.02 (R ² =0.48)	RH_m	CLD 0.54 PR-0 0.32 PR-1 0.25 PR-2 0.12 (R ² =0.62)	Mean RH Increases with cloud Increases with precip (Memory)
T_n	CLD -0.36 PR-0 0.17 PR-1 0.0 PR-2 0.02 (R ² =0.16)	RH_x	CLD 0.36 PR-0 0.20 PR-1 0.20 PR-2 0.11 (R ² =0.35)	Maximum RH Increases with cloud Increases with precip (Memory) Saturation limits fall of T _n
DTR	CLD -0.65 PR-0 -0.24 PR-1 -0.15 PR-2 -0.05 (R ² =0.76)	DRH	CLD -0.27 PR-0 -0.17 PR-1 -0.04 PR-2 0.01 (R ² =0.31)	Diurnal range RH Decreases with cloud Decreases with precip

1953-2011 (3081 months) 12 stations

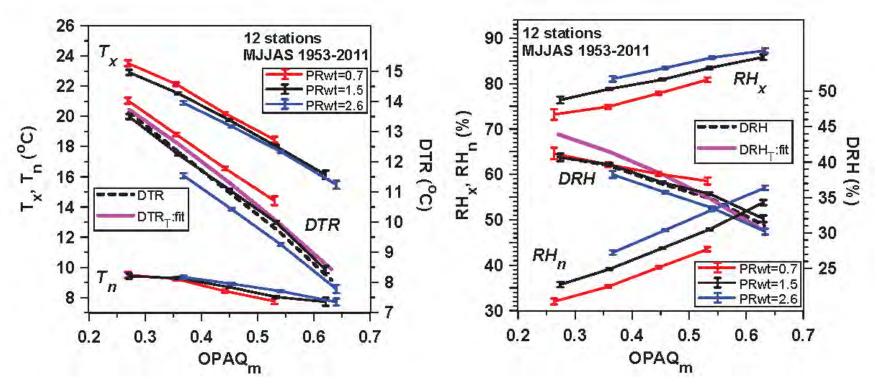
MJJAS merge: coupling coefficients

T_x	(±0.01) CLD -1.01 PR-0 -0.07 PR-1 -0.14 PR-2 -0.03 (R ² =0.62)	RH _n	(±0.01) CLD 0.63 PR-0 0.37 PR-1 0.24 PR-2 0.10 (R ² =0.71)	(±0.02) Q _{TX} CLD -0.10 PR-0 0.48 PR-1 0.23 PR-2 0.16 (R ² =0.21)	θ_{Ex}	CLD -0.65 PR-0 0.25 PR-1 0.10 PR-2 0.10 (R ² =0.26)
T _m	CLD -0.70 PR-0 0.03 PR-1 -0.08 PR-2 -0.02 (R ² =0.48)	RH_m	CLD 0.54 PR-0 0.32 PR-1 0.25 PR-2 0.12 (R ² =0.62)	Qm CLD -0.12 PR-0 0.39 PR-1 0.23 PR-2 0.15 (R ² =0.20)	P _{LCLx} (cloud-base)	CLD -0.80 PR-0 -0.41 PR-1 -0.32 PR-2 -0.14 (<u>R</u> ² =0.70)
T_n	CLD -0.36 PR-0 0.17 PR-1 0.0 PR-2 0.02 (R ² =0.16)	RH_x	CLD 0.36 PR-0 0.20 PR-1 0.20 PR-2 0.11 (R ² =0.35)	Q _{Tn} CLD -0.10 PR-0 0.32 PR-1 0.16 PR-2 0.12 (R ² =0.15)	DP _{LCL}	CLD -0.51 PR-0 -0.26 PR-1 -0.16 PR-2 -0.05 (R ² =0.61)

DTR CLD -0.65 PR-0 -0.24 PR-1 -0.15 PR-2 -0.05 (R²=0.76) DRH CLD -0.27 PR-0 -0.17 PR-0 -0.17 PR-1 -0.04 PR-2 0.01 (R²=0.31)

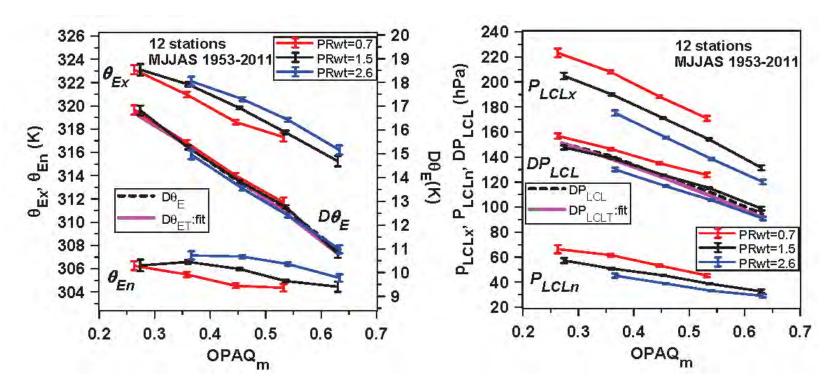

 $Q_{Tx}, Q_m \longrightarrow precip, little cloud RH_n, T_x move inversely with cloud <math>P_{LCLx}$ part mirror of RH_n $T_m \longrightarrow cloud$ not precip θ_{Ex} down/up with cloud/precip

1953-2011 (3081 months) 12 stations


Dry to Wet Coefficient Change

3081 months: split into precip (PR-0) SD ranges: < -1σ, -1 to 0, 0 to 1, >1σ (393, 1382, 887, 421 mos)

- Asymmetric response
- Wet to dry conditions: dependence on precip. increases
- Except drought (0.3 mm/day)
- Consistent with uptake of water damping precip. anomalies (GRACE data)

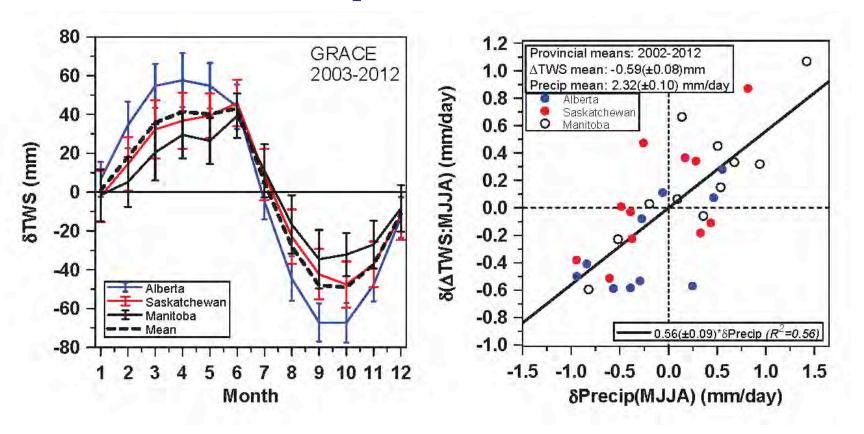


Monthly Climate of T, RH on Cloud and Precipitation

- Sorted by cloud and weighted precip. anomalies
 - $-\delta PRwt = 0.61*\delta PR-0 + 0.39*\delta PR-1$
 - DTR increases with decreasing cloud and precip.
 - Afternoon RH_n increases with cloud, precip.

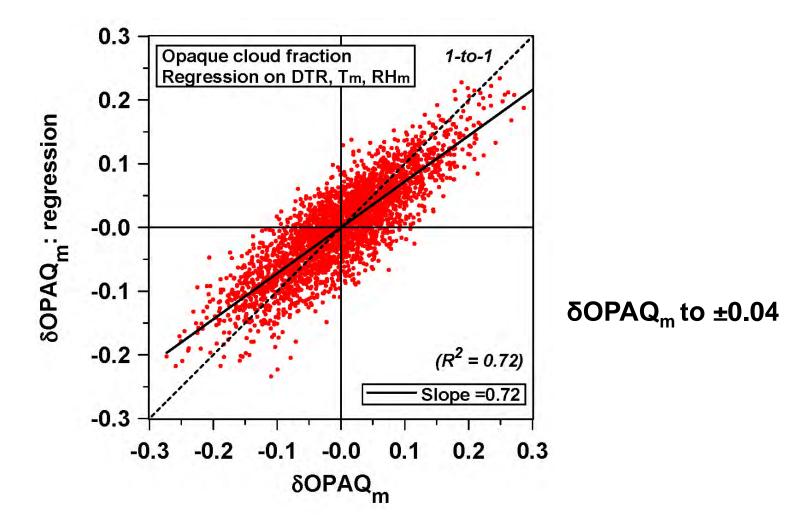
Afternoon maximum of θ_{Ex} and P_{LCLx} on Cloud and Precipitation

- Afternoon θ_{Ex} increases with weighted precip
- Afternoon cloud-base (P_{LCLx}) falls with precip
- Both favor convective instability

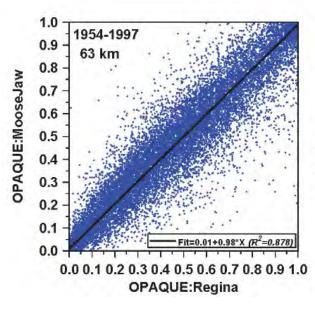

Monthly and daily bins

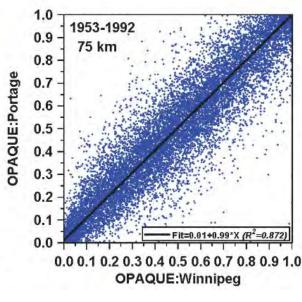
- Daily binning shows dependence of climate on cloud (radiation) and wind-speed
- Monthly anomaly analysis adds the lagged precipitation (soil moisture) dependence
 - RH, Q precip. memory goes back 2-5 months
- Asymmetric response to dry/wet precipitation anomalies
- Observed coupling coefficients can be compared with model representations

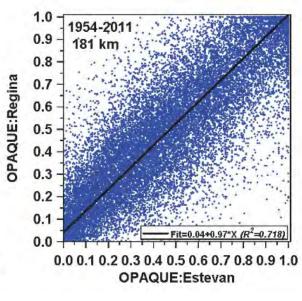
Warm Season Climate: T>0°C


- Hydrometeorology
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
 - Can't 'understand' climate with T & Precip.
- Monthly timescale coupling
 - $-T_m$ depends on radiation not precip.
 - $-Q_m$ depends on precip. more than radiation
 - DTR, RH_x, RH_m, θ_{Ex} , P_{LCLx} : coupled to both
 - Sensitivity to precip. increases wet-to-dry, then falls with drought

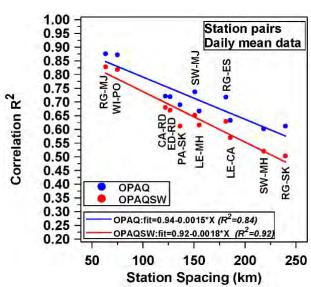
Seasonal Drydown damps Precip anomalies

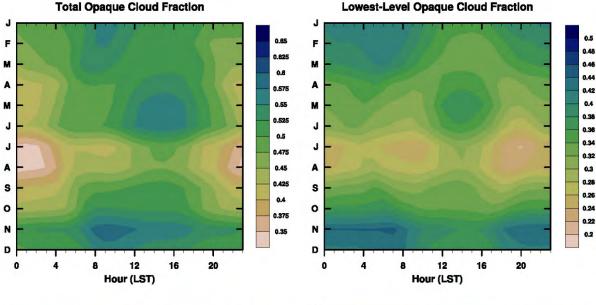

- GRACE data shows seasonal change: Δ(Total Water Storage)
- δ(ΔTWS) damps 56% of precipitation anomalies


Cloud anomalies from Climate anomalies

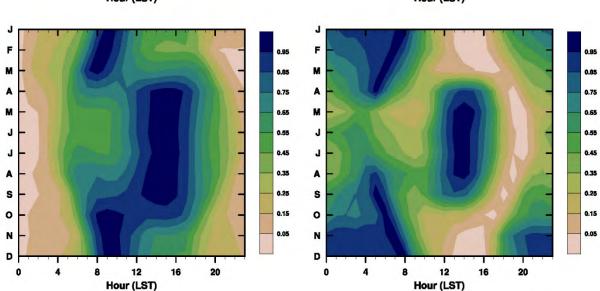


• $\delta OPAQ_{m\sigma}$: reg = -0.64* δDTR_{σ} -0.23* $\delta T_{m\sigma}$ +0.11* $\delta RH_{m\sigma}$


Opaque Cloud (Observers)



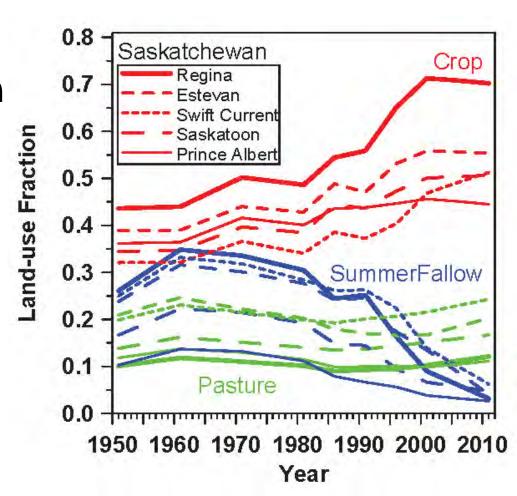
- Daily means unbiased
- Correlation falls with distance
- Good data!

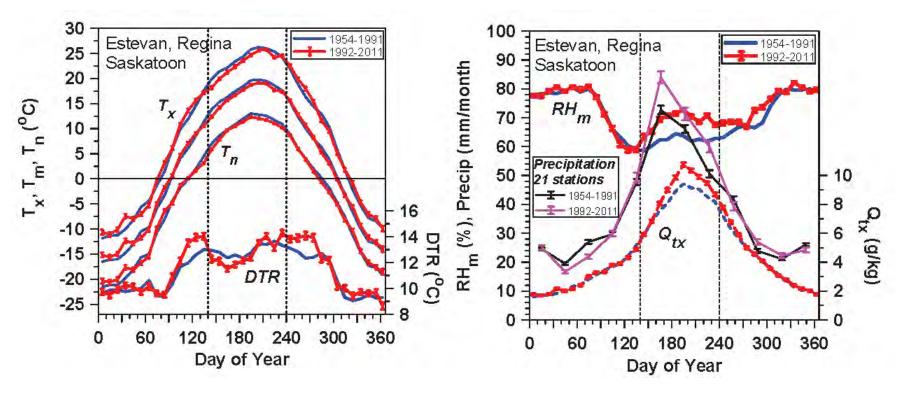


Annual/Diurnal Opaque Cloud

 Total opaque cloud fraction and lowestlevel opaque cloud

- Normalized diurnal cycles (where 1 is the diurnal maximum and 0 is the minimum.
- Regime shift between cold and warm seasons: Why? Cloud forcing changes sign

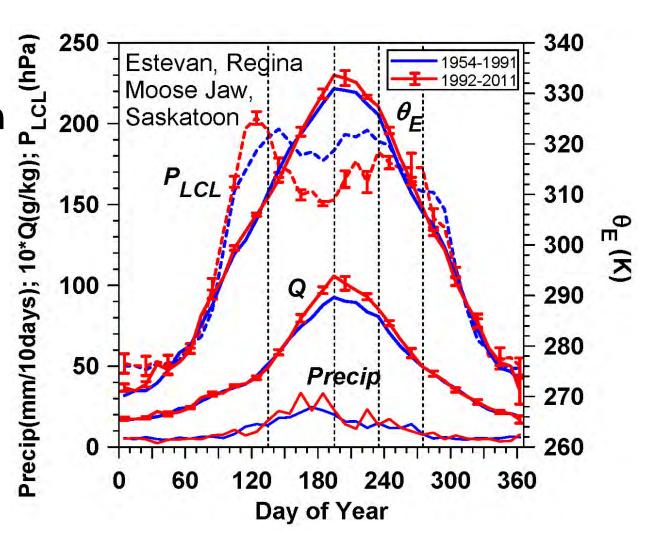

15 Prairie stations: 1953-2011


 How has changes in cropping changed the growing season climate?

Change in Cropping (SK)

- Ecodistrict mean for 50-km around station
- 5 Mha drop (25%) in 'SummerFallow'
 - no crops: save water
- Split at 1991 Ask
- Has summer climate changed?

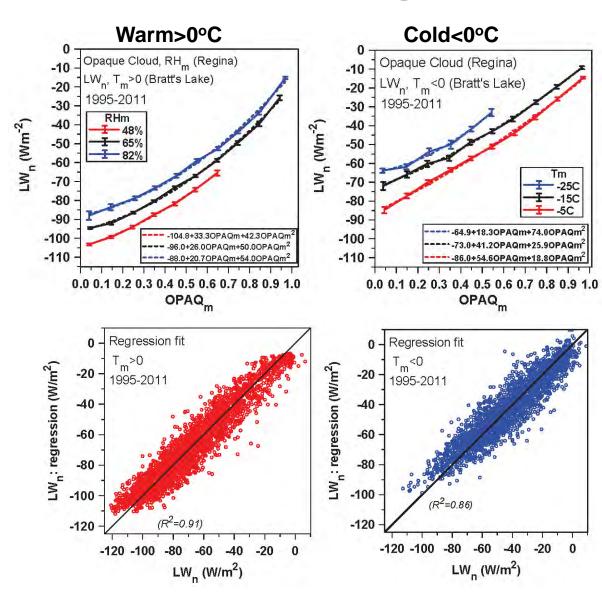
Three Station Mean in SK

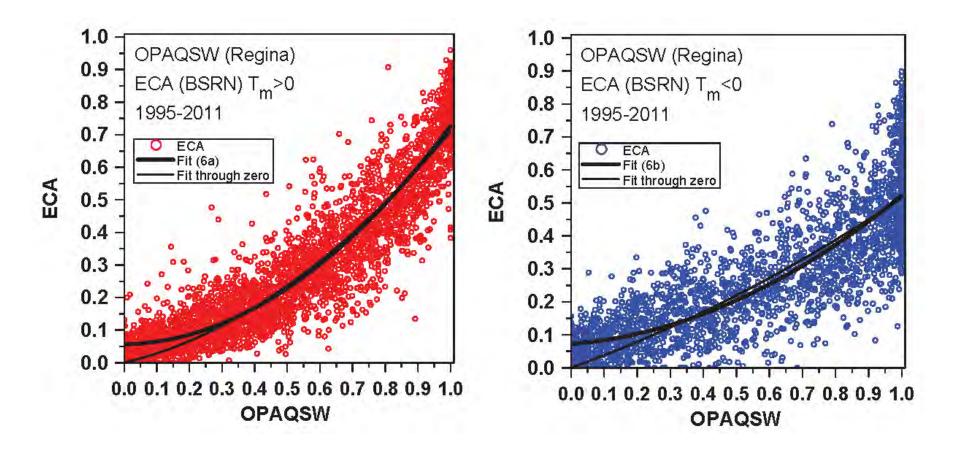


- Growing season (Day of Year: 140-240)
- (T_x, T_m) cooler (-0.93±0.09, -0.82±0.07 °C)
- (RH_m, Q_{tx}) (+6.9±0.2%, +0.70±0.04 g/kg)
- Precipitation: +25.9±4.6 mm for JJA (+10%)

Impact on Convective Instability

Growing season

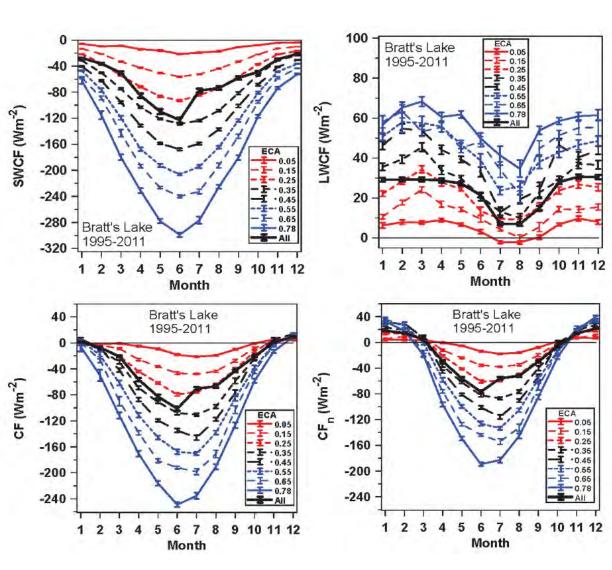

- Lower LCL
- Higher θ_E
- More Precip


Use BSRN data to "calibrate" daily opaque/reflective Cloud at Regina

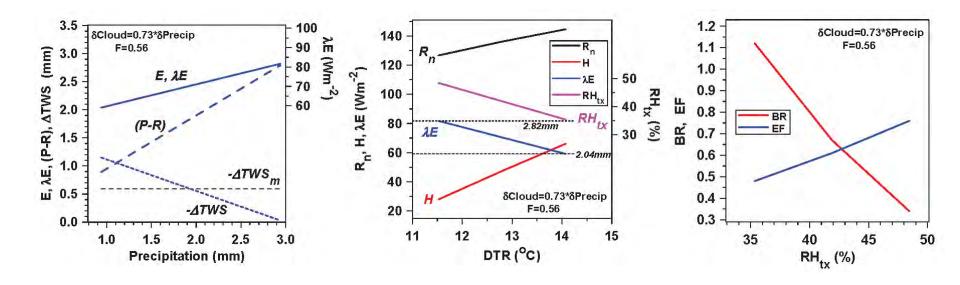
- Daily mean opaque cloud OPAQ_m
- LW cools but clouds reduce cooling
- Net LW: LW_n
 - T>0: RH dependence
 - T<0: T, TCWV also
- Regression gives LW_n to $\pm 8W/m^2$ for $T_m>0$ ($R^2=0.91$)

(Betts et al. 2015)

SW calibration



- Contrast simple quadratic fit with fit through zero
- Uncertainty at low opaque cloud end
 - Thin cirrus not opaque


SW and LW Cloud Forcing BSRN at Bratt's Lake, SK

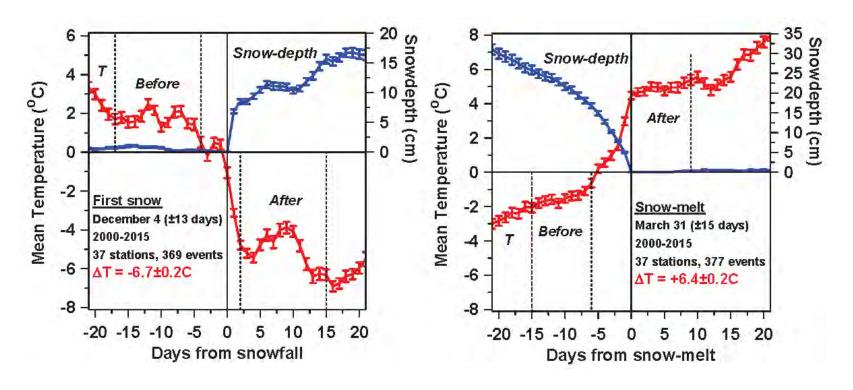
- "Cloud Forcing"
 - Change from clear-sky flux
- Clouds reflect SW
 - SWCF
 - Cool
- Clouds trap LW
 - LWCF
 - Warms
- Sum is CF
- Surface albedo reduces SW_n
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve
- Regime change

(Betts et al. 2015)

Growing Season Coupling between Energy and Water Budgets and Surface Climate

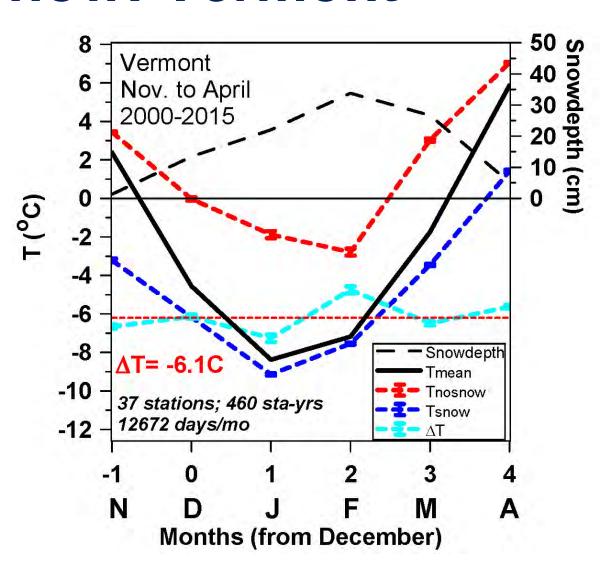
- Total water storage (GRACE) coupled to precipitation variability (F=0.56)
- Betts et al. 2014b
- Climate cloud coupling: δCloud = 0.73 δPrecip
- R_n coupled to cloud variability
- Diurnal climate coupled to cloud and precipitation variability (regression)

Warm and Cold Seasons

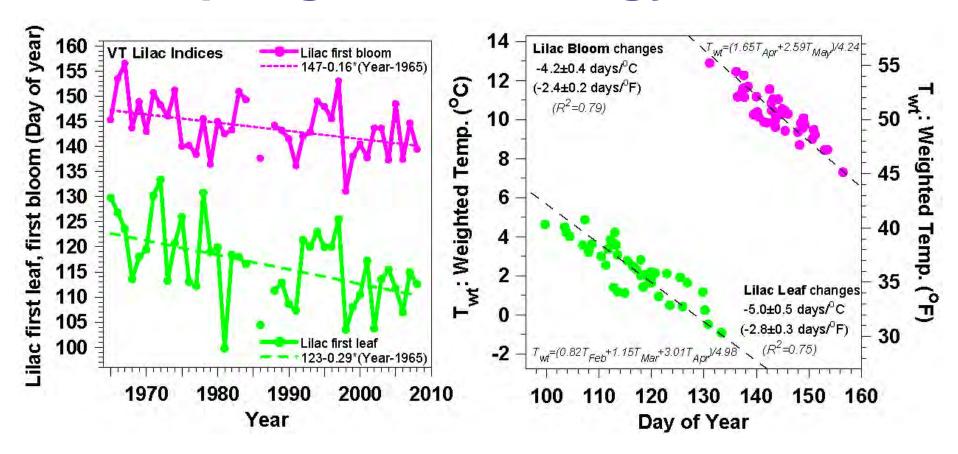


- Unstable BL: SWCF -
- Clouds at LCL
 - reflect sunlight

- Stable BL: LWCF +
- Cloud reduce LW loss
- Snow reflects sunlight


- Temperature falls/rises 6.5 °C with first snowfall/snowmelt
- Albedo with snow less than Prairies

Climatological Impact of Snow: Vermont


Separate mean climatology into days with no-snow and with snow

Difference $\Delta T = -6.1(\pm 0.7)^{\circ}C$

Snow-free winters: warmer than snowy winters: +6°C

Coupling to Phenology -Lilacs

- Leaf-out earlier by 3 days/decade (tracks ice-out)
- Leaf-out changes 5 days/°C
- Snow-free winters: +6°C * 5days = 30 days earlier

Climate Processes

- Solar seasonal cycle
- Temp., RH, Cloud, Precip. coupled
- Reflection of SW
 - Clouds: Water drops, ice crystals
 - Cools surface
 - Snow and ice on surface
 - Cools surface
- Water vapor/<u>clouds</u> trap LW
 - Re-radiation down warms surface