Revisiting Hydrometeorology using Cloud and Climate Observations

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

Co-authors: Ray Desjardins, Devon Worth Agriculture and Agri-Food Canada Ahmed Tawfik

hmed Tawfi NCAR

ECMWF *July 11, 2016*

Reinventing Hydrometeorology

- Betts (2004): Understanding hydrometeorology
 using global models. (Now Observations)
- Canadian Prairies: northern climate
 - Cold season hydrometeorology
 - Snow is a fast climate switch
 - Two distinct "climates" above and below 0°C
 - 5-mo memory of cold season precipitation
 - Warm season hydrometeorology
 - T and RH have joint dependence on radiation and precipitation on monthly timescales
 - 2-4 months precipitation memory
 - System Coupling parameters (observations)

15 Prairie stations: 1953-2011

- *Hourly* p, T, RH, WS, WD, <u>Opaque Cloud</u> by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955; BSRN data
- Albedo data (MODIS/CCRS: 250m)

http://alanbetts.com

- Betts, A.K., R. Desjardins and D. Worth (2013a), Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos.*, *118*, 1–19, doi:10.1002/jgrd.50593
- Betts, A. K., R. Desjardins, D. Worth, and D. Cerkowniak (2013), Impact of land use change on the diurnal cycle climate of the Canadian Prairies, J. Geophys. Res. Atmos., 118, 11,996–12,011, doi:10.1002/2013JD020717.
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies. *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021168
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014), Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos. 119, 13305-13326, doi:10.1002/2014JD022511
- Betts, A.K., R. Desjardins, A.C.M. Beljaars and A. Tawfik (2015). Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front. Earth Sci. 3:13. http://dx.doi.org/10.3389/feart.2015.00013
- Betts, AK and A.B. Tawfik (2016) Annual Climatology of the Diurnal Cycle on the Canadian Prairies. Front. Earth Sci. 4:1. doi: 10.3389/feart.2016.00001
- Betts, A. K., R. Desjardins and D. Worth (2016). The Impact of Clouds, Land use and Snow Cover on Climate in the Canadian Prairies. Adv. Sci. Res., 1, 1–6, doi:10.5194/asr-1-1-2016

Diurnal Climate Dataset

- Reduce hourly data to
 - daily means: T_m , RH_m , $OPAQ_m$ etc
 - data at $T_{max/min}$: T_x and T_n
- Diurnal cycle approx. climate

$$-DTR = T_x - T_n$$
$$-\Delta RH = RH_{tn} - RH_{tx}$$

- Full diurnal Cycle: ≡ monthly
 - 'True' diurnal ranges (Critical for winter)
 - Energy imbalance of diurnal cycle

Snowfall and Snowmelt *Winter and Spring transitions*

- Temperature falls/rises about 10K with first snowfall/snowmelt
- Snow reflects sunlight; shift to cold stable BL
 - <u>Local climate switch between warm and cold seasons</u>
 - Winter comes fast with snow

Betts et al. 2014a

Impact of Snow on Climate

Separate mean climatology into days with no-snow and Snowdepth >0

ΔT = T:no-snow –**T:snow** = -10.2(±1.1)°C

Betts et al. (2016)

Interannual variability of T coupled to Snow Cover

- Alberta: 79% of variance
- Slope T_m -14.7 (± 0.6) K

10% fewer snow days

<u>= 1.5K warmer</u>

<u>on Prairies</u>

Surface Radiation Budget

- $R_n = SW_n + LW_n$
- Define Effective Cloud Albedo

ECA = - SWCF/ SW_{dn} (clear) SW_n = (1 - α_s)(1 - ECA) SW_{dn} (clear)

Reflected by surface, clouds MODIS Calibrate Opaque Cloud data with Baseline Surface Radiation Network (BSRN)

Opaque Cloud (Observers)

- Daily means unbiased
- Correlation falls with distance
- Good data!

Annual/Diurnal Opaque Cloud

 Total opaque cloud fraction and lowestlevel opaque cloud

- Normalized diurnal cycles (where 1 is the diurnal maximum and 0 is the minimum.
- Regime shift between cold and warm seasons: Why? Cloud forcing changes sign

Use BSRN data to "calibrate" daily opaque/reflective Cloud at Regina

- Daily mean opaque cloud OPAQ_m
- LW cools but clouds reduce cooling
- Net LW: LW_n
 - T>0: RH dependence
 - T<0: T, TCWV also
- Regression gives LW_n to ± 8W/m² for T_m>0 (R²=0.91)

(Betts et al. 2015)

SW and LW Cloud Forcing BSRN at Bratt's Lake, SK

Month

- "Cloud Forcing"
 - Change from clear-sky flux
- **Clouds reflect SW**
 - SWCF
 - Cool
- **Clouds trap LW**
 - **LWCF**
 - Warms
- Sum is CF •
- Surface albedo • reduces SW_n
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve
- Regime change

(Betts et al. 2015)

Diurnal cycle: Clouds & Snow

Canadian Prairies 660 station-years of data

Winter climatology

- Colder when clear
- LWCF dominant with snow
- Stable BL

Summer climatology

- Warmer when clear
- SWCF dominant: no snow
- Unstable daytime BL

Transition months:

- Show <u>both</u> climatologies
- With 11K separation
- Fast transitions with snow
- Snow is "Climate switch"

Monthly diurnal climatology (by snow and cloud)

Merge all data (650 years: 240,000 days)

Cold-Snow (31%)

Mixed (10%)

Warm-NoSnow (59%) (Standard errors tiny)

Betts and Tawfik 2016)

Impact of Snow

- Distinct warm and cold season states
- Snow cover is the <u>"climate switch"</u>
- **<u>Prairies:</u>** $\Delta T = -10^{\circ}C$ (winter albedo = 0.7)
- Vermont: $\Delta T = -6^{\circ}C$ (winter albedo 0.3 to 0.4)
- Snow transforms BL-cloud coupling
 - No-snow 'Warm when clear' convective BL
 - Snow 'Cold when clear' stable BL

Warm Season Climate: T>0°C (April – October with no snow)

- Hydrometeorology
 - with Precipitation and Radiation
 - <u>Diurnal cycle of T and RH</u>
 - Cannot do <u>coupling</u> with just T & Precip !
- Daily timescale is radiation driven
 Night LW_n; day SW_n (and EF)
- Monthly timescale: Fully coupled
- (Long timescales: separation)

Betts et al. 2014b; Betts and Tawfik 2016)

Warm Season Diurnal Climatology

- Averaging daily values (Conventional) $DTR_D = T_{xD} - T_{nD}$ $DRH_D = RH_{xD} - RH_{nD}$ (rarely shown)
- Extract mean diurnal ranges from composites ('True' radiatively-coupled diurnal ranges: damps advection)

$$DTR_{T} = T_{xT} - T_{nT}$$
$$DRH_{T} = RH_{xT} - RH_{nT}$$

• Q1: How are they related? DTR_T < DTR_D

Monthly Diurnal Climatology

Q2: How much warmer is it at the end of a clear day?

Diurnal Ranges & Imbalances

- April to Sept: <u>same coupled structure</u>
- Q1:DTR_T, DRH_T < DTR_D, DRH_D <u>always</u>
- Q2:Clear-sky: warmer (+2°C), drier (-6%)

Diurnal Ranges & Imbalances

- April to Sept: <u>same coupled structure</u>
- Clear-sky: θ_E (+3K), LCL higher (+18hPa)

(Betts and Tawfik 2016)

Stratify by Cloud and Wind

- Low wind-speed: DTR increases
 - T_n falls; T_x , θ_{Ex} increase; (P_{LCLx} falls) - Precip. increases in mid-range

Warm Season Climate: T>0°C (May to September: no snow)

- Hydrometeorology
 - with Precipitation and Radiation
 - <u>Diurnal cycle of T and RH</u>
 - Cannot do <u>coupling</u> with just T & Precip !
- <u>Monthly timescale: Fully coupled</u> – Use regression to couple anomalies

Betts et al. 2014b

Fully coupled system

What are the <u>coupling coefficients</u> in the "real world"?

Monthly Regression on Cloud and lagged Precip. anomalies

- Monthly anomalies (normalized by STD of means)
 - opaque cloud (CLD)
 - precip. (PR-0, PR-1, PR-2): current, previous 2 to 5 months

e.g.

<u>April: memory of entire cold season (snow, soil ice)</u> back to November freeze <u>June, July, Aug: memory of moisture back to March</u>

April: Memory of Precip. to November

1953-2011: 12 stations (619 months)

Variable	δDTR	δT _x	δRH _n	δP _{LCLx}
$\mathbf{R}^2 =$	0.67	0.48	0.66	0.66
Cld-Apr	-0.52±0.02	-0.78±0.04	0.76±0.03	-0.93±0.04
PR-Apr	-0.04±0.01	0.00±0.03	0.14±0.02	-0.13±0.03
PR-Mar	-0.13±0.02	-0.25±0.04	0.25±0.03	-0.30±0.04
PR-Feb	-0.09±0.02	-0.15±0.05	0.19±0.04	-0.24±0.04
PR-Jan	-0.10±0.02	-0.20±0.04	0.19±0.03	-0.22±0.04
PR-Dec	-0.06±0.02	-0.07±0.05	0.20±0.04	-0.24±0.04
PR-Nov	-0.09±0.02	-0.14±0.04	0.08±0.03	-0.12±0.04

April Climate

- Regression on Opaq. Cloud, Precip: $R^2 \approx 0.7$
- Regression on Winter Precip: R² ≈ 0.35

Summer Precip Memory back to March

JULY 1953-2011: 12 stations (615 sta-years)

JULY	δDTR	δRH _n	δP _{LCLx}	δQ _{Tx}	
R ²	0.68	0.62	0.62	0.26	
Cld-July	-0.58±0.03	0.63±0.04	-0.80±0.05	0.04±0.07	
PR-July -0.24±0.02		0.35±0.03	-0.42±0.04	0.40±0.05	
PR-June	-0.15±0.01	0.27±0.02	-0.36±0.03	0.39±0.04	
PR-May	-0.12±0.02	0.13±0.03	-0.20±0.04	0.24±0.06	
PR-Apr	-0.05±0.03	0.10±0.05	-0.11±0.06	0.26±0.09	
PR-Mar		0.16±0.07	-0.19±0.09	0.36±0.14	

June, July, Aug have precip memory back to March

Monthly timescale: Regression

1953-2011: 12 stations (615/month)

δDTR anomalies

Month	K	A (CLD)	B(PR-0)	C (PR-1)	D (PR-2)	R ²
May	0±0.02	-0.61±0.02	-0.27±0.02	-0.17±0.03	-0.06±0.05	0.74
Jun	0±0.02	-0.54±0.04	-0.22±0.02	-0.18±0.02	-0.05±0.03	0.68
July	0±0.02	-0.57±0.03	-0.24±0.02	-0.15±0.01	-0.12±0.02	0.68
Aug	0±0.02	-0.67±0.02	-0.26±0.02	-0.13±0.02	-0.03 ± 0.02	0.80
Sept	0±0.02	-0.71 ± 0.02	-0.30±0.02	-0.12±0.02	-0.03 ± 0.02	0.84

Betts et al. 2014b, revisited

MJJA merge: coupling coefficients

T _x	(±0.015) CLD -0.96 PR-0 -0.07 PR-1 -0.16 PR-2 -0.01	<i>Maximum temp. Falls strongly with cloud Falls a little with precip.</i>
T _m	(R ² =0.58) CLD -0.68 PR-0 0.03 PR-1 -0.10 PR-2 -0.00 (R ² =0.44)	SWCF (negative) Little precip dependence
T _n	CLD -0.34 PR-0 0.17 PR-1 -0.01 PR-2 0.04 (<i>R</i> ² =0.14)	<i>Minimum temp. Falls with cloud Increases a little with precip.</i>
DTR	CLD -0.61 PR-0 -0.24 PR-1 -0.15 PR-2 -0.06 (<i>R</i> ² =0.73)	Highest correlation Falls strongly with cloud Falls with precip. (memory)

1953-2011 (2466 months) 12 stations

MJJA merge: coupling coefficients

T _x	(±0.015) CLD -0.96 PR-0 -0.07 PR-1 -0.16 PR-2 -0.01 (R ² =0.58)	RH _n	(±0.015) CLD 0.64 PR-0 0.36 PR-1 0.24 PR-2 0.12 (<u><i>R</i>²=0.69</u>)	<i>Minimum RH Increases with cloud Increases with precip (Memory)</i>
T _m	CLD -0.68 PR-0 0.03 PR-1 -0.10 PR-2 -0.00 (<i>R</i> ² =0.44)	RH _m	CLD 0.57 PR-0 0.31 PR-1 0.26 PR-2 0.14 (<i>R</i> ² =0.61)	Mean RH Increases with cloud Increases with precip (Memory)
T _n	CLD -0.34 PR-0 0.17 PR-1 -0.01 PR-2 0.04 (<i>R</i> ² =0.14)	RH _x	CLD 0.41 PR-0 0.19 PR-1 0.21 PR-2 0.12 (<i>R</i> ² =0.36)	Maximum RH Increases with cloud Increases with precip (Memory) <u>Saturation limits fall of T_n</u>
DTR	CLD -0.61 PR-0 -0.24 PR-1 -0.15 PR-2 -0.06 (<u>R²=0.73</u>)	DRH	CLD -0.23 PR-0 -0.17 PR-1 -0.03 PR-2 0.0 (<i>R</i> ² =0.26)	<i>Diurnal range RH Decreases with cloud Decreases with precip</i>

1953-2011 (2466 months) 12 stations

MJJA merge: coupling coefficients

Dry to Wet Coefficient Change

3081 months: split into precip (PR-0) SD ranges: < -1σ, -1 to 0, 0 to 1, >1σ (393, 1382, 885, 421 mos)

- Asymmetric response
- Wet to dry conditions: dependence on precip. increases
- Except drought (0.3 mm/day)
- Consistent with uptake of water damping precip. anomalies (GRACE data)

Seasonal Drydown damps Precip anomalies

- GRACE data shows seasonal change: Δ(Total Water Storage)
- δ(ΔTWS) damps 56% of precipitation anomalies

Betts et al. 2014b

Monthly Climate of T, RH on Cloud and Precipitation

- Sorted by cloud and weighted precip. anomalies
 - $-\delta PRwt = 0.60^{*} \delta PR-0 + 0.40^{*} \delta PR-1$
 - DTR increases with decreasing cloud and precip.
 - Afternoon RH_n increases with cloud, precip.

Afternoon maximum of θ_{Ex} and P_{LCLx} on Cloud and Precipitation

- Afternoon θ_{Ex} increases with weighted precip
- Afternoon cloud-base (P_{LCLx}) falls with precip
- Both favor convective instability

Diurnal Cycle of Q

Binned by Opaque Cloud Diurnal spread increases Binned by Weighted Precipitation Precip/evap shifts Q mean Cloud and Precip coupled

Cloud anomalies from Climate anomalies

• $\delta OPAQ_{m\sigma}$: reg = -0.64* δDTR_{σ} -0.23* $\delta T_{m\sigma}$ +0.11* δRH_{m}

Monthly and daily bins

- Daily binning shows dependence of climate on cloud (radiation) and wind-speed
- Monthly anomaly analysis adds the lagged precipitation (soil moisture) dependence
 - RH, Q precip. memory as long as 5 months
- Asymmetric response to dry/wet precipitation anomalies
- Observed coupling coefficients can be compared with model representations

Warm Season Climate: T>0°C

- Hydrometeorology
 - with Precipitation and Radiation
 - <u>Diurnal cycle of T and RH</u>
 - Can't 'understand' climate with **T** & **Precip**.
- Monthly timescale coupling
 - $-T_m$ depends on radiation not precip.
 - $-Q_m$ depends on precip. more than radiation
 - DTR, RH_x , RH_m , θ_{Ex} , P_{LCLx} : coupled to both
 - Sensitivity to precip. increases wet-to-dry, then falls with drought