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Idealized model for stratocumulus cloud layer thickness 
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ABSTRACT 
Equilibrium solutions are constructed using an idealized model for mixed and partially mixed 
boundary layers to show the dependence of the equilibrium cloud layer thickness on different 
physical processes. The condition when a mixed layer becomes cloud-free is reduced to a 
comparison between three pressure scales, associated with the surface wind and divergence, 
the radiative cooling and the subsaturation of the entrained air. The evaporation of layer cloud 
by cloud-top mixing is also formulated in terms of simple pressure scales. 

1. Introduction 

This paper discusses the solutions for cloud- 
layer thickness of an idealized convective bound- 
ary layer (CBL) model (Betts, 1983). Cloud layer 
thickness is related to three contributing factors : 
the surface forcing, the radiative forcing and the 
cloud top entrainment of dry air. The magnitude 
of each of these processes will be expressed in 
terms of pressure scales, whose sum determines 
cloud layer thickness. The prediction of cloud 
layer thickness and fractional cloudiness remains 
a difficult task in global forecast and climate 
models, and the observational study of clouds and 
their radiative effects is the major objective of the 
International Satellite Cloud Climatology Project 
(ISCCP). In this paper, horizontal homogeneity 
will be assumed, so that the model solutions are a 
more realistic representation of stratocumulus 
than broken cloud fields. In addition, in this 
idealized analysis, boundary layer depth and the 
mean radiative cooling (or heating) rate in 
the convective boundary layer are specified 
parameters. 

Mixed-layer models for the cloudy boundary 
layer have a long history (Lilly, 1968; Schubert, 
1976; Schubert et al., 1979a, b; Stage and 
Businger, 1981a, b; Fitzjarrald, 1982). Betts 
(1983) used conserved variable diagrams to show 
the balance of surface, entrainment, and radiat- 
ive fluxes. This paper extends this work to 
include a partially mixed cloudy boundary layer 

and to develop an approximate analytic frame- 
work for understanding mean-layer cloud thick- 
ness in cloudy boundary layers. Other simple 
models for partially mixed boundary layers have 
been largely developed for modelling shallow 
cumulus boundary layers (Betts, 1973, 1975, 
1976; Sarachik, 1974; Ogura and Cho, 1974; 
Albrecht et al., 1979, Albrecht, 1979, 1981; 
Augstein and Wendel, 1980). Betts (1986) 
suggested that the thermodynamic structure of 
CBLs could be represented in general by mixing 
line models. This approach will be taken here. 

2. Budget equation for idealized structure 

Fig. 1 shows the thermodynamic structure for 
an idealized partially mixed boundary layer. The 
diagram is a 8*, q* plot, where the conserved 
variables are saturation point (SP) potential tem- 
perature and mixing ratio. For unsaturated air 
these are the familiar 8, and q and the parcel SP 
is the thermodynamic point of the lifting conden- 
sation level; while for cloudy air they are liquid 
water potential temperature and total water. On 
this plot, the isobars or saturation pressure lines 
( p * )  are curved while the moist adiabats 
(OES = 340 K is shown dashed on Fig. 1) are 
nearly h e a r .  AJ is the layer mean SP, 0 the SP of 
the surface, T the SP of air above the boundary 
layer which is being entrained into it. The layer 
has a gradient of thermodynamic properties 
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Fig. 1. Saturation point diagram for non-equilibrium, 
partially mixed CBL with radiative cooling. 

S with height from B to C, which we shall 
suppose is a uniform change with pressure along 
a mixing line (Betts, 1982). Mixing lines are 
straight lines on this diagram. We have drawn 
the mixing line Ql33 slightly unstable to the dry 
adiabat (constant P). This is typical of strato- 
cumulus off the south-western coast of California 
with advection over warmer water associated 
with a northerly low level flow. At the boundary 
layer top (pr), we shall assume a sharp 
thermodynamic transition from C to r. Q', 
and g are defined later. 

Consider a horizontally homogeneous time- 
dependent layer of instantaneous (pressure) 
thickness, h =po  - p T .  Following Betts (1983), 
the vertically integrated thermodynamic budget 
equation for the layer with vertical SP profile, 2, 
and mean, &f, can be written 

P O  

hg = o0(Q - B)  - (4~) W ~ P )  dp 
PT 

+ i (T -  &f) + he,, (1) 

where the overdot denotes a time derivative, 
o ( p )  is the mean vertical motion (which we shall 
suppose is subsiding), wo (defined positive) is a 
surface transfer coefficient (pgC, V,, where C, is 
a drag coefficient, and Vo the surface wind 
speed), and 8, is the mean radiative heating (or 
cooling) rate for the whole CBL. We shall 
simplify (1) by considering constant divergence, 

D, so that 

4 P )  = D(P0 - P) 
and at the CBL top 

w,, = Dh. (2b) 

Then (1) simplifies for all profiles of 8 to 

hS=o,(Q-~)+((Dh+i) (T-M)+he, .  (3) 

This relates the time dependence of the mixed- 
layer mean to the surface fluxes, the entrainment 
at the top of the CBL and the mean radiative 
heating rate. This entrainment term is not the 
entrainment flux one might measure by aircraft 
at the base of the inversion: this would be 
(Dh + d)(T- C). However the mean budget 
equations (1) and (3) consider the impact of 
entrainment of air with properties Ton the layer 
average &f (see Deardorff, 1974; Betts, 1974b). 
We shall consider equilibrium solutions of (3). 

3. Equilibrium solutions 

3.1, Equilibrium state 

fied surface SP 
We shall replace B in (3) by defining a modi- 

Q' = 0 + (&f- B). (4) 

For a mixed layer B = &f and Q' = 0, but, for a 
partially mixed layer, Q' is shifted from Q up the 
mixing line of the CBL (see Fig. 1). 

We can also define an equilibrium state 5, 
which satisfies 

O = ~ , ( Q ' - & ) + ( D h + h ) ( T - g ) + h e , .  ( 5 )  

This represents the balance of surface, entrain- 
ment and radiative fluxes. By substituting (4) in 
(3) and subtracting (5) we obtain 

&f = (8 - &f)(wo m,)/h = (& - & f ) / T ,  ( 6 )  

where 

0, = Dh + i (7) 
is the entrainment velocity at boundary layer top. 
This describes the approach of &f towards an 
equilibrium state g which satisfies from (6) 

g = (00 (2' + 0 , ~ ) / ( 0 0  + 0,) + 8, T, 
with a mean-layer adjustment timescale 

(8) 

T = h/(w, + 0,). (9) 
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This equilibrium solution & is the weighted 
average of Q', T ;  modified (at constant q) by 
radiation. The transformation from 0 to Q' has 
enabled us to construct a mixed layer model, as in 
Betts (1983), for a turbulently coupled, but not 
well-mixed layer. In Fig. 1, &' lies on the mixing 
line between Q' and T and is given by 

E' = (wo Q' + we T) / (wo + we). (8') 

The radiative term shifts the equilibrium state 
from &' to &. 

In equilibrium, &f + 4 and &f = h' = 0, and the 
entrainment velocity, w, = oh = Dh: the mean 
subsidence at the equilibrium CBL top height h. 
The timescale T in (9) can be expressed in terms 
of the mean divergence and a surface transfer 
timescale wo/h  

I/T = ( D  + o o / h ) .  (10) 

This mean layer adjustment timescale can be 
large (Schubert, 1976). typically of order a day 
(see Table 1). 

The radiative heating or cooling rate in (5) can 
be re-expressed in terms of a radiative change of 
saturation level (SL), w i  : 

heR = hw,+(dO/dp),, = w i  A&, (1 1) 

where we have further defined for convenience a 
parameter AOR which is (to the extent that 
(de/ap),, may be taken as constant in the CBL) 
just the potential temperature difference across 
the CBL along the q isopleth through &f. w i  is 
the rate of change of the layer mean SL due to 
radiative processes: for example the rate at which 
radiative cooling will thicken a cloud layer with a 
fixed top. Substituting (9) and (1 1) in (8) gives 

E = ( ~ 0  0 + W ,  T + 0; A&)/(wO + we). (12) 

Table 1 gives 3 sets of values. The first line rep- 
resents a shallow CBL (120 mb depth) with mod- 

Table 1. Boundary layer parameters 

erately high subsidence and divergence typical of 
stratocumulus in subsidence regimes, and the 
second is representative of the weaker divergence 
over much of the tropical oceans, where the CBL 
and the subsidence are in near balance with the 
background radiative cooling and radjatively 
driven subsidence (Betts and Albrecht, 1987; 
Betts and Ridgway, 1988). The third example 
with the strongest subsidence and divergence will 
be discussed later: it will just satisfy a no-cloud 
condition. wo corresponds to a surface wind 
speed of 7.8 m s-l and an oceanic bulk transfer 
coefficient, C,, of 1.3.10-3. Over much of the 
oceans, the timescale T is of order a day. The 
values of w i  of 40 and 25 mb day-' correspond to 
mean cooling rates of 3 and 1.75 K day-' respect- 
ively. The right hand part of Table 1 is discussed 
below. 

3.2.  Equilibrium cloud layer thickness 
These horizontally homogeneous SP models 

give particularly simple solutions for cloud thick- 
ness. They indicate the relative importance of 
different physical processes and also illustrate the 
reduction in cloud thickness from mixed to par- 
tially mixed boundary layers. Eqs. (8) and (12) 
give saturation potential temperature and mixing 
ratio (e* and q*) for the equilibrium solution. 8* 
and q* (which are liquid water potential tempera- 
ture and total water mixing ratio within cloud) 
are the extensively conserved parameters in a 
mixing process: while radiative cooling only 
changes f?*. To a fair approximation, satisfactory 
for a qualitative analysis (see Appendix), we can 
consider saturation level pressure p* as a variable 
conserved in mixing by expressing it as a 
linearized combination of O* and q* (Betts, 1983). 
This gives approximate, but very useful illustra- 
tive solutions for the CBL cloud thickness. Con- 
ceptually, the p* budget is important because it 
describes the tendency of a layer towards 

h, 
0 0  h we D 5 4 P T  no nR p = o  
(mb day-') (mb) (mb day-') (s-l) (days) (mb day-') (mb) (mb) (mb) (mb) /?, 

100 120 60 5.10-6 0.75 40 -150 200 80 49 0.33 
100 200 40 2.10+' 1.43 25 -150 500 125 136 0.58 

100 100 65 6.5.10-6 0.61 30 -200 154 46 0 
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saturation. At saturation, clouds appear, and 
these have a major radiative impact. So we may 
regard the p* budget as a crucial link between the 
thermodynamic and radiative budgets. 

3.2.1. Well mixed layer. For a well-mixed layer, 
the saturation level p: of in (12) will also be the 
mean cloud base. Treating p* as an approxi- 
mately conserved parameter (see Appendix), pE 
is a weighted average of the SL pressures p d ,  p: 
of the surface air, and the air entrained at cloud- 
top, modified by radiation 

Subtracting p z  from the boundary layer top press- 
ure pT = p o  - h gives the mean cloud layer 
thickness 

where Yo, pT are the saturation pressure 
departures, (p* -p), for the surface and 
entrained air respectively. 

This equation shows the balance of the differ- 
ent processes in determining cloud layer thick- 
ness. There are three o-velocities associated with 
the surface wind, the entrainment rate and the 
radiative process. Two of these (oo, and a,) 
control T through (9). There are two parameters 
Po, PT related to the subsaturation of the air at 
the surface and the air entrained through the 
inversion. 

Over the ocean Po = 0 (air is saturated at the 
ocean surface pressure) so that the cloud thick- 
ness is given by 

h, = T{Wo + W,(gT/h)  + W i } .  (15) 

The surface and radiative processes increase 
cloud thickness and the entrainment of unsatu- 
rated air reduces it (PT is negative). The criterion 
for no layer cloud is clearly of interest. It is 

(wO + w,*) < welYTl/h. (16) 

The first two sets of values shown in Table 1 give 
cloud for boundary layers that are well mixed. 
Stronger subsidence (w,) and larger negative PT 
for the entrained air are needed to satisfy (16). 

3.2.2. Pressure scale formulation. One manipu- 
lation of (14) is of conceptual interest. If we 
substitute from (7) (for an equilibrium layer with 

h =  0)  in (IS), we get 

h, = h(w0 + DPT + O,') / (Wo + Dh) 
= h(Bo + 1 1 ~  PT)/(~o + h), (17) 

where two pressure scales have been defined 

no = oo/D,n, = w,*/D. (18) 

Schubert (1976), Schubert et al. (1979a, b) and 
Fitzjarrald (1982) noted the importance of the 
pressure scale no for boundary layer equilibrium. 
The criteria (16) for no cloud has now been 
reduced to the comparison of pressure scales 

Table 1 shows values for no and nR. no, the 
pressure scale associated with the surface fluxes, 
is typically large compared with the subsaturation 
YT, so that it is hard to achieve the no cloud 
criteria (19) over the oceans. The first two lines in 
Table 1 do not indeed satisfy (19), and the second 
to last column gives the corresponding cloud 
thickness for a well mixed layer. The third 
example has stronger divergence (6.5 x s-') 
and more unsaturated entrained air (YT = - 200 
mb) and just satisfies (19) giving zero cloud 
thickness. 

3.2.3. Partially mixed boundary layer. I f  the 
boundary layer is only partially mixed, then (13) 
becomes 

p: = (WO P: + we PT + hw,*) / (wO + w e ) .  (20) 

The shift from Q to Q' in (20) lifts the saturation 
level of the layer mean. However, in general, p: is 
no longer the level of cloud-base. Within the 
boundary layer, the SL, p*, is now a function of 
pressure and we shall use the simple parameter- 
ization suggested by Betts (1986) 

B = dP*/dP (21) 

and assume B is a constant for the CBL. fi  = 0 
corresponds to a well mixed layer, and p >  0 to a 
layer which is thermodynamically coupled, but 
not well-mixed. A boundary layer capped by 
clouds also requires /? < 1. Hence 

Cloud base p,' is at the level where p ,  = p,', giving 
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The corresponding cloud thickness is 

h, = T { O o (  I + .qo/h - 8) + O,(gT/h - ! f i )  
+ w,*} / ( I  - D ) .  (24) 

Over the oceans, Yo = 0, and we get a cloud 
thickness 

h, = T(w0 + (w,(:9T/h - i p )  + a,*)/( 1 - p ) }  (25a) 

= h{ no + [ :pT - i p h  + n,]/( 1 - f i ) } / ( n O  + h), 
(25b) 

if we substitute the pressure scales no, and n, 
from (18). Generally the cloud thickness for a 
partially mixed layer is reduced, and for some 
value of say &, the stratiform cloud layer van- 
ishes. From (25a) /Ic is given by 

p c  = (00 + W,(YpT/h) + w,*)/(wo + iwc). (26) 

If we substitute from (14), supposing for 
simplicity that wo, w,, w:, YT and h do not 
change, then (26) can be rewritten as 

h,(B = O)(w, + foe) 

h(w0 + 0,) B, = (27) 

That is, if h, is the cloud thickness in a well- 
mixed boundary layer, then if the layer becomes 
less well mixed the cloud will disappear for some 
value of /3, z h,/h since typically w, < wo. The 
first example in Table 1 gives a mixed layer cloud 
thickness of 49 mb, but this cloud layer 
disappears for p, = 0.33. 

It is clear that if the boundary layer is not well- 
mixed, it will be more difficult to maintain 
saturation below its top, and hence a solid cloud 
layer. Stratocumulus layers are rarely well mixed 
and hence (25) shows that the prediction of cloud 
layer thickness requires a realistic estimate of /I. 
Boers and Betts (1988) found fl  x 0.4 within a 
time dependent stratocumulus layer off the West 
Coast of the USA. The second example in Table 
1, with weaker subsidence and a deeper boundary 
layer, would have a thick cloud layer if well 
mixed, but over most of the oceans the cloud-top 
entrainment instability criterion (Randall, 1980; 
Deardorff, 1980) is met and the CBL is not well 
mixed. Typically we observe p z 0.1 to 0.2 in the 
subcloud layer and p z 1 in the cloud layer with a 
field of scattered cumulus clouds. Table 1 shows 
that layer cloud disappears in this diagnostic 
model for a layer mean value of p>0.6 .  For- 
mulae analogous to (25) become increasingly 

complicated for more complex CBL structures, 
and of course the assumption of horizontal homo- 
geneity fails as the breakup of a cloud layer is 
reached. 

3.3. Diagnostic use of cloud thickness relationship 
Eq. ( I  7) can be used diagnostically to estimate 

no and n, for a well-mixed cloudy boundary layer 
in equilibrium. Fig. 2 shows an example. We 
observe a cloud-base at  E. g,  found by going 
along a line of constant q to  the mixing line 
between 0 and T, is the equilibrium state without 
radiative cooling. The radiative change of cloud 
thickness between g' and E is h,: 

h, = a,* T = BR h/(no + h). (28) 

Substituting in (17) and rearranging gives the 
result 

no = h(h, - h, - ..P,)/(h - h, + h,). (29) 

This also follows directly from Fig. 2, since is a 
weighted average of 0 and T i n  the ratio oo/o, or 
nO/h. Thus we can find no and H, from (29) and 
(28) from observed values of h, h,, h,, and YT. 
Given wo (related to drag coefficient times 
surface wind) we have the divergence D, the 
entrainment and subsidence rate, we, and from 
w: = Dn,, the mean radiative cooling rate of the 
boundary layer. 

320 1 I I I 

Fig. 2. As Fig. 1 for equilibrium mixed layer with net 
radiative cooling at cloud-top, showing diagnostic use 
of cloud thickness relationships. The dashed lines indi- 
cate the dry (0,) and moist (&) virtual adiabats. 
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For partially mixed layers p can be estimated 
and (25) used. The biggest practical limitation of 
this approach is the equilibrium assumption. 
Schubert et al. (1979a) showed that the mean 
boundary layer thermodynamic parameters adjust 
with the time-scale T in (lo), but the adjustment 
time for the boundary layer depth is determined 
by h / o ,  = D,  which is typically longer than T. 

Thus on timescales = T, a boundary layer may be 
close to internal thermodynamic equilibrium, but 
not have reached its equilibrium depth. In this 
case an analysis for a given depth h will be 
correct in terms of the entrainment rate and 
radiative cooling; although entrainment and 
subsidence will not be in balance. This is 
equivalent in defining no, n, using an effective 
divergence D‘ given by 

we = D’h = Dh + h. 
The diagnostic analysis will give no, n,; D’ and 
o, (from oo), but the large scale subsidence 
cannot be separated from h. 

Fig. 2 illustrates the p* budget approximation 
(see Subsection 3.2 and Appendix). For example, 
&‘ is defined most accurately as a weighted 
average of t> and T using 0* and q*. Using eq. 
(29), however, involves the neglect of the 
variations in the spacing of the isobars along 
Q&‘T. Eq. (28) is a satisfactory method of finding 
n, since the pressure difference between &‘ and 8 
is typically small. To the extent that we can 
neglect the changes in spacing and curvature of 
the isobars between ,p’ and g& then n, is also 
just the pressure difference between T and T‘ 
(Betts, 1983). 

Two other features of Fig. 2 are merely illustra- 
tive. Q& has been drawn parallel to a dry virtual 
adiabat (constant virtual potential temperature, 
0,) since a near-neutral subcloud layer is the 
typical equilibrium state over the ocean. T& has 
been drawn slightly stable to the moist virtual 
adiabat which is the stability criteria for no 
cloud-top entrainment instability (Randall, 1980; 
Deardorff, 1980; Betts, 1983). 

4. Evaporation of layer cloud by cloud-top 
mixing 

Hanson (1984), Randall (1984), and Albrecht et 
al. (1985) have discussed how the thermodynamic 

properties of air entrained at cloud-top affects the 
rate of dissipation of a cloud layer. The results of 
Randall (1984) for a well mixed boundary layer 
are particularly simple (although approximate) 
when cast in the p* coordinate system. 

The effect of cloud-top entrainment into a well- 
mixed layer can be isolated by neglecting the 
surface and radiative fluxes and the subsidence in 
eq. (3) giving (Randall, 1984) 

where the mixed-layer thickness h = p o  -pT, and 
we have assumed po is constant. The correspond- 
ing approximate saturation level budget equation 
is 

@&, and dT are respectively the rate of rise of 
cloud-base and cloud-top due to the entrainment 
process. The cloud thickness will deepen or get 
thinner as both base and top rise, according to 
whether 
-=(-)21 d T  h 
d& P&-Pr+  

We can rewrite this condition as 

(32’) 

where h,, h, are the pressure thicknesses of the 
cloud and subcloud layers respectively. Thus, the 
condition for the cloud layer deepening or getting 
thinner can also be written as 

(33) 
We see that if the subcloud layer (which is 
coupled to the cloud layer by the well-mixed layer 
assumption) is deeper than YT, the measure of 
the subsaturation of air entrained at cloud top, 
then the rise of cloud-base will be slower than the 
rate of deepening by entrainment, and the cloud- 
layer will get thicker as it rises. Thus, under some 
conditions (inequality (33): corresponding to suf- 
ficiently moist entrained air or a deep subcloud 
layer), cloud-top entrainment will not tend to 
dissipate cloud (Randall, 1984). The inequality 
(33) is dependent, however, on the mixed-layer 
assumption. Rapid cloud-top entrainment may 
well produce a layer that is not well mixed, and 
we have shown in Section 3 that in equilibrium, 
this will give a much thinner mean cloud layer. 
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The above analysis also shows that if the cloud 
layer itself stays well mixed but uncouples from 
the subcloud layer (Nicholls, 1984), then cloud- 
top entrainment will always tend to thin the cloud 
layer. The mixed layer thickness becomes h, in 
(31), and (32) becomes 

(34) 

5. Conclusions 

We have shown how an idealized model using 
the saturation pressure budget approximation 
gives the equilibrium cloud depth for well-mixed 
boundary layers as a sum of the forcing pro- 
cesses: the surface transfer, the entrainment of 
dry air at the CBL top and the bulk radiative 
cooling. The effect on cloud thickness of the 
surface fluxes (through the surface wind and bulk 
transfer coefficient), and the mean divergence of 
the horizontal wind appear only combined in a 
surface transfer pressure scale, no. The bulk 
radiative cooling of the CBL can be expressed as 
a presssure scale nR. These solutions show that an 
equilibrium well mixed layer will always be 
cloudy unless there is strong low level divergence 
because no + nR > lYTl, a measure of the subsatu- 
ration of the dry air sinking into the CBL. How- 
ever, these solutions also show that the thickness 
of layer cloud in a boundary layer is very sensi- 
tive to the “well-mixed layer” assumption. Par- 
tially mixed layers will tend to have much thinner 
layer cloud. 

These equilibrium relationships are primarily 
of diagnostic interest, since neither boundary 
layer depth nor entrainment rate have been pre- 
dicted. They indicate the relative importance of 
different processes in determining cloud thick- 
ness, and can be used diagnostically to estimate 
mean divergence, entrainment rate, and radiative 
cooling in boundary layers near equilibrium from 
other parameters that are more easily observed, 
such as the surface wind, cloud and boundary 
layer depths, and the thermodynamic structure. 

The analysis of cloud deepening by cloud-top 
entrainment of Randall (1984) has been ex- 
pressed using the p* budget approximation. This 
shows that the criterion for cloud-top deepening 
by entrainment depends on the ratio of the depth 

of the subcloud layer to the saturation pressure 
departure (a measure in p* coordinates of the 
subsaturation) of the air entrained at cloud-top. 
Cloud layers that uncouple from the surface will 
always thin by cloud-top mixing. 
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7. Appendix 

Saturation pressure budget approximation 
The total water (q*) budget is accurate in the 

absence of precipitation. The saturation (or 
liquid water) potential temperature budget is 
reasonably accurate. Uncertainties (of order a 
few percent) exist, associated with the generation 
and dissipation of kinetic energy (Betts, 1974a), 
and if these are neglected, a layer mean value of 
(T/8) can be used to convert between the mean T 
and 8 budgets for a CBL. In addition horizontal 
variations of 8*/0 must be neglected in mixing 
processes, but these are typically small ( x  1 %) in 
layer clouds. The saturation pressure budget in- 
volves a larger approximation, which becomes 
clearer if we express variations of p* as a linear 
combination of 8* and q* 

6p* = u s e *  + b6q*, (A]) 

where 

a = (2pP*/88*),., b = (2p*/dq*),.. 

To the extent that we can neglect the variations 
of the gradients a and b in a shallow layer, then 
the p* budget is as accurate as the 8*, and q* 
budgets. 

However, if we consider the budget equation 

0 = o o ( Q  - g) + o,(T - g), (A2) 

we find that a and b in (Al) can vary by as much 
as 20% between the extreme SP’s of the surface 
and that of the entrained air z, so that computing 
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Table 2. Non-linearity of p* on mixing line 

e* 4+ P+ AP* 
(K) (g kg-’) (mb) (mb) 

298 17 960.5 
300 15 906.4 54.1 
302 13 852.3 54.1 
304 11 797.7 54.7 
306 9 741.7 56.0 
308 7 682.9 58.8 
310 5 618.5 64.4 

pg from 

0 =%(Po’ -PZ) + 4 P T ’  -p: , ,  (A31 

rather than from e,+, qz found from the 
corresponding 8*, and q* equations, can give an 
error in p z  as large as 10 mb. Nonetheless, the 

approximation implied by the linearization (Al) 
is qualitatively useful to understand the controls 
of stratocumulus layer depth discussed in this 
paper. 

Another way of visualizing this approximation 
is to consider the non-linearity of p* on a mixing 
line: a line of constant dO*/dq*. Table 2 shows a 
typical tropical CBL mixing line and the change 
Ap* for equal increments of AO* = Aq* = 1. For 
saturation levels within the CBL (say 96&800 
mb), the non-linearity of Ap* is small (5 1 %). It 
is only large for the much drier SP’s typical of the 
entrained air. From an observational viewpoint, 
the error introduced by this approximation is 
equivalent (for the data here) to introducing an 
error in q of the entrained air of 0.7 g kg-’, which 
is comparable to typical measurement or 
sampling errors. 
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