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Abstract This paper analyzes multi-year records of solar flux and climate data from two solar power
sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical
power production, and cloud cover. Power production has a linear relation to a dimensionless measure of
the transmission of sunlight through the cloud field. The difference between panel and air temperatures
reaches 24∘C with high solar flux and low wind speed. High panel temperatures that occur in summer
with low wind speeds and clear skies can reduce power production by as much as 13%. The intercom-
parison of two sites 63 km apart shows that while temperature is highly correlated on daily (R2=0.98)
and hourly (R2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (R2=0.86)
to hourly (R2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal
temperature range shows a nearly linear increase with falling cloud cover to 16∘C under nearly clear skies,
similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows
local student groups, a Rutland High School team here, to explore the coupled relationships between
climate, clouds, and renewable power production. As our society makes major changes in our energy
infrastructure in response to climate change, it is important that we accelerate the technical education
of high school students using real-world data.

1. Introduction

Vermont has an ambitious comprehensive energy plan with the goal of meeting 90% of the state’s energy
needs through renewable resources by 2050 [Vermont Comprehensive Energy Plan, 2015]. Part of this is a tran-
sition to a distributed renewable energy power system based on solar power and wind farms. In addition, the
installed cost of solar power has fallen more than 60% in the past 6 years. As a result, Vermont has seen rapid
deployment of solar power projects ranging in scale from small arrays of a few kilowatts (kW) of peak power
for individual households, community-shared arrays of a few hundred kilowatts, and much larger megawatt
arrays. Since 2011, more than 100 MW of solar photovoltaic (PV) electric generation has been added in the
state, and installations proposed for 2016 are increasing in size. At the same time, Green Mountain Power
(GMP), the largest electrical utility in Vermont, is moving forward with integrating ever-increasing solar
power into a smart grid with distributed electrical storage. On a global scale, non-governmental organi-
zations [e.g., Solar Electric Light Fund, 2015] are developing local solar micro-grids that can provide essential
power to small communities for lights, communications, irrigation, clinics, and schools, where electrical
power from a central grid is unavailable. In coming decades, it is likely that rising sea level, and the ris-
ing threat of the collapse of global ecosystems [Barnosky et al., 2012] due to direct human intervention
and ongoing climate change driven by a fossil-fuel economy, will drive a rapid global shift to renewables
despite powerful resistance from political, economic and financial interests. Vermont has accepted the need
for this shift, in part because its own iconic ecosystem is threatened [ANR, 2015], and the State has become
a leader in the transition towards a renewable energy system. Recently, Rutland Vermont achieved its goal
of becoming the city with the most solar power per capita in New England [Green Mountain Power, 2015].

This is the context for our analysis of solar power and climate by a Rutland High School team. Solar arrays
measure electrical power production, but some arrays also monitor the incoming solar flux and other mete-
orological parameters, such as temperature and wind speed. These data are transformative as we can now
document across the landscape how the solar flux drives maximum temperature and the diurnal range of
temperature and infer the role of clouds in reducing the shortwave heating of the surface as well as electrical
power production. At the same time, these data, coupled with panel temperature and wind data, elegantly
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show students the components of the energy balance of a solar-heated surface and give insight into the
behavior of the more complex land-surface climate system. The analysis of these datasets provides an excel-
lent opportunity for students to understand the relation between solar flux and power production as well
as solar flux and diurnal climate. Both the energy and climate aspects are readily accessible to students,
teachers, and the public. The integration of this understanding into the educational system is invaluable
because the rapid evolution of the state power infrastructure towards a more sustainable system based on
renewable energy requires broad public understanding and support.

The Vermont Experimental Program to Stimulate Competitive Research (VT EPSCoR), under a National
Science Foundation grant to the University of Vermont, funds a project called “Research on Adaptation to
Climate Change in the Lake Champlain Basin” (RACC). The VT EPSCoR Center for Workforce Development
and Diversity (CWDD) at Saint Michael’s College, Vermont (www.uvm.edu/˜cwdd) works to integrate stu-
dents and teachers into the current EPSCoR research with the goal of increasing the diversity of students
interested in and pursuing a career in the fields of science, technology, engineering and mathematics. Every
year, the CWDD integrates high school teams, consisting of two students, a supervising science teacher
and a RACC scientist as mentor, into the RACC research. There were 20 high school teams in 2014–2015
and 18 high school teams in 2015–2016. The application process and the benefits to students and teach-
ers are outlined on the website (www.uvm.edu/epscor/highschool). Every year starts with a week-long
residential training session on the Saint Michael’s College campus in the summer with an overview of the
project, training on data collection and analysis, and instruction on specific projects by a team’s mentor.
Participants develop skills in scientific methods and Earth systems thinking and experience what it is like
to be a scientist. This paper is based on an engineering and climate analysis of data from two solar power
sites in Vermont by a Rutland High School team.

From a systems perspective, this project has several essential components. It was designed by the lead
author and mentor (AKB) and executed as a merged educational and research project with Rutland High
School seniors (JH and SL) and their science teacher (AMM), but it was only possible because of the support
of both CWDD and GMP. And beyond this, the state of Vermont has provided extensive policy support for
the development of renewable energy sources, especially solar power. The raw data were preprocessed
before being given to the students as excel files, together with some suggested analyses. Their science
teacher supervised their progress in school on a weekly basis, and their mentor visited the school about
monthly to give further advice as their technical and conceptual understanding developed. The students
gave an oral presentation of their work at the annual 2015 Vermont EPSCoR student research symposium
[for video and PDF, see Hamilton et al., 2015]. Some of this work was also incorporated into their senior
capstone projects, for example, the website of Hamilton [2015]. The final integration of results into this paper
was the responsibility of the lead author.

From a science education perspective, Vermont adopted the Next Generation Science Standards (NGSS)
in June 2013. This research project addresses two of the NGSS Performance Expectations (PE) for High
Schools [NGSS, 2013]: Engineering Design, specifically HS-ETS1-4, and Earth and Human Activity, specifically
HS-ESS3-4. The first, HS-ETS1-4, has the PE “Use a computer simulation to model the impact of proposed
solutions to a complex real-world problem with numerous criteria and constraints on interactions within
and between systems relevant to the problem.” In this case, these 12th grade students used spreadsheet
analysis to study the complex coupling between solar flux, climate (clouds, temperature and wind), panel
temperature, and power generation and address the cross-cutting concept “Systems and system models.”
The second, HS-ESS3-4, has the PE “Evaluate or refine a technological solution that reduces impacts of
human activities on natural systems.” In this case, the disciplinary core idea is that “Scientists and engineers
can make major contributions by developing technologies that produce less pollution and waste and
that preclude ecosystem degradation.” Solar arrays are being deployed to reduce CO2 pollution from the
burning of fossil fuels in order to reduce climate change risks. These high school students are analyzing
geoscience data to understand the coupling between climate and solar power and some of the operational
tradeoffs involved.

This analysis by a Rutland High School team uses data from the GMP solar educational site on Route 7N in
Rutland, Vermont for the years 2010–2013 and the comparison with similar data for 2011–2013 from the
Ferrisburgh Solar Farm about 63km to the north. After discussing the data processing, we will address both
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Table 1. Green Mountain Power Rutland Solar Array Variables

Variable Abbreviation Units Instrument

Year

Day of Year DOY

Local Time LST

Air Temperature Tair (∘C) Thermister

Panel Temperature Tpanel (∘C) Thermister

Wind Speed m/s Anemometer

Downward Solar Flux SWdn W/m2 Li-Cor pyranometer

Panel Solar Flux SWP W/m2 Li-Cor pyranometer

Power Generated Power kW, kWh/Mo

climate and engineering questions. We first show the inter-annual differences of temperature, wind, panel
solar flux, electrical power production, and cloud cover. Then, we explore the dependence of power gener-
ation on the solar flux, which in turn depends on cloud cover and snow covering the panels as well as the
impact of solar flux and wind on panel temperature. Then, we explore how the diurnal range of tempera-
ture depends on cloud cover. Because distributed solar flux data has become available only recently with
the installation of solar arrays, these analyses have a research fascination for students. At the same time,
they give important insight into how climate, clouds, and renewable power are part of a coupled system.

Traditionally, measurements of temperature and precipitation have been used to characterize climate
because they are routinely available. However, the surface daily solar flux is critically important to the
diurnal climate [Betts et al., 2013, 2015]. Historically, only hours of daily sunshine were estimated at climate
stations. Now, with the widespread deployment of distributed solar arrays, we are entering a new era for
analysis. Some of this analysis was inspired by an exceptional long-term dataset from the Canadian Prairies,
which recorded opaque cloud every hour from which the daily solar flux can be calculated [Betts et al.,
2013, 2015]. In a broader context, cloud and radiation observations play a critical role in improving our
understanding of the climate system. A major uncertainty in our weather forecast and climate models has
long been the model computation of the cloud fields [Senior and Mitchell, 1993] and the radiative forcing
that depends on them. So these new data from solar arrays, in addition to inspiring a new generation of
students, will deepen our observational understanding of the impact of clouds on climate.

2. Data Processing

2.1. Green Mountain Power Data

Our primary analysis data comes from the Green Mountain Power (GMP) 50 kW solar power educational site
on Route 7N in Rutland, Vermont, located at 43∘ 38′12′′N, 72∘ 58′30′′W at an elevation of 189m (621ft). We
analyze data from 2010–2013. The measured variables include those shown in Table 1.

Figure 1 shows the panel array and the temperature sensor (bottom left) and (bottom right) the pyra-
nometer measuring the solar shortwave flux orthogonal to the panel, abbreviated SWP in Table 1. The
anemometer measuring wind speed and the pyranometer measuring the downward solar flux on a
horizontal surface, SWdn, are mounted on the roof of the small brown building behind the solar array.
The data were archived as 15-min means. From these, we extracted the daily maximum and minimum air
temperatures (T max and T min) and derived hourly, daily, and monthly means for all variables. We define the
daily or diurnal temperature range as

DTR = Tmax − Tmin (1)

2.2. Ferrisburgh Solar Farm Data

We have a second dataset from the Ferrisburgh Solar Farm, owned by Pomerleau Real Estate. This is a much
larger 1 MW solar array, just south of Ferrisburgh, Vermont, located at 44∘ 10′11′′N; 73∘ 14′25′′W at an
elevation of 56m (183 ft). This site is 63 km (39 miles) north-north-west of the GMP Rutland site. It has mea-
surements of Tair, Tpanel, SWP, and Power generated, archived as 15-min means. We will compare hourly and
daily mean Tair and SWP between the two sites for 2011–2013 when we have data from both.

BETTS ET AL. INTEGRATING SOLAR ENERGY AND CLIMATE RESEARCH 4
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Figure 1. Green Mountain Power Solar array (top), air temperature sensor (bottom left), and (bottom right) pyranometer measuring the
solar flux orthogonal to the panel.

2.3. How Clouds Reduce the Clear-Sky Solar Flux

Opaque clouds reflect sunlight, which reduces the downward solar flux below its clear-sky value, so clouds
play a crucial role in both climate and electrical power production. It is useful to represent the cloud field
by the dimensionless ratio, the Effective Cloud Transmission, defined as

ECT = SWdn∕ SWCdn (2)

where SWdn is the measured downward shortwave flux on a horizontal surface, and SWCdn is the corre-
sponding clear-sky flux in the absence of clouds. ECT has a range between 0 for very thick overcast skies
and 1 for clear skies. Betts [2009] defined a corresponding effective cloud albedo as ECA = 1 - ECT. The
clear-sky flux SWCdn varies over the year as the elevation of the sun (the solar zenith angle) changes, and
we get an estimate on clear-sky days with no clouds. However, it is routinely calculated in models, and here,
we use values from the European Weather Centre reanalysis called ERA-Interim [Dee et al., 2011].

Figure 2 illustrates equation (2) using the daily mean measurements of SWdn for 2010–2013 from the GMP
Rutland solar site. The left panel shows measured SWdn (blue circles) and SWCdn (red dots) derived from daily
ERA-Interim fluxes (see Appendix) together with a mean fit to the clear-sky data (black line). The clear-sky
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Figure 2. Measured daily mean downward solar flux and clear-sky solar flux (left) and (right) daily and monthly mean effective cloud
transmission.
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Figure 3. Annual cycle of Tmax, Tmean, and Tmin (left) and (right) wind speed for the 4 years.

fluxes form an upper envelope to the SWdn measurements, with a range from around 100 W/m2 at the winter
solstice to 370 W/m2 at the summer solstice. These values have been averaged over the 24-hr day, including
the zeros at night, so they are much less than the peak solar clear-sky flux, which reaches 1000 W/m2 near
local noon. The reduction of the surface flux by clouds is just the distance between corresponding red and
blue points for the same day.

The right panel shows the transformation to the ECT. The day-to-day variability is very large, so we have
superimposed the monthly mean values of ECT for 2010–2013 (solid black line). This shows that on average,
the cloud field transmits less of the solar energy in winter than in July.

3. Monthly Mean Climatology

3.1. Inter-Annual Variability of Temperature and Wind Speed

Rutland Vermont, at a latitude of 43.637∘N, has a large annual cycle of temperature because the solar ele-
vation is higher and day length is longer in summer than in winter. Figure 3 shows the inter-annual differ-
ences of temperature and wind speed. On the left, we show the monthly means of maximum temperature,
T max (red), mean air temperature, T mean (black), and minimum temperature, T min (blue) for the 4 years. The
differences in monthly mean temperature are much larger in winter than in summer because the presence
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Figure 4. Monthly mean solar flux on panels and electrical power production (left) and (right) effective cloud transmission for the 4
years.

or absence of reflective snow cover has a large impact on temperature [Betts, 2011; Betts et al., 2014]. The
months January to March 2012, which had little permanent snow cover, were 5∘C warmer than the same
months in 2011, a winter with more snow. Monthly mean T max is above freezing in January and February
2012. The right panel shows that the monthly mean wind speeds are lowest in summer, when strong syn-
optic weather systems are less frequent. The variability in wind speed from year to year is smaller than the
range of the annual cycle.

3.2. Inter-Annual Variability of Solar Flux, Power Generation, and Cloud Cover

Solar panels convert about 15% of the sun’s energy into electricity, so power production depends on the
solar flux normal to the panels, SWP, which is measured. Figure 4 (left panel] shows the annual cycle of the
measured solar flux and the power production in kWh/month for the 4 years. Both show a minimum in
December and a maximum in July, as expected, because the sun is lower in the sky in winter, day-length
is shorter, and cloud transmission is less. The year-to-year variation in the monthly mean solar flux and
power production are similar because both are reduced by the cloud transmission, shown in the right
panel.

4. Daily and Hourly Power Production

4.1. Daily Power Production

Figure 5 plots the daily mean power production against the daily mean of the solar flux on the panels for
the four seasons. The linear regression fit through zero for all the data excluding winter is

Power = 0.0425 (±0.0001) ∗ SWP

(
R2 = 0.997

)
(3)

There is a scattering of points below the line that are mostly in winter. Although we have no snow records
at the GMP site, observations from the Rutland Cooperative Observer site confirm that these points below
the regression line correspond to days after fresh snowfall. Until it melts, snow cover on the panels reduces
power production, and it may also affect the accuracy of the panel solar flux measurement.

4.2. Hourly Power Production

Although solar power production depends primarily on the solar energy falling on the panels, the conver-
sion to electricity falls as the panel temperature increases. About 15% of the sun’s energy is converted to
electricity, and the rest heats the panels above air temperature, while the ambient wind cools them. In addi-
tion, both Tair and wind speed vary seasonally (Figure 3), so these interconnected processes affect power
production. Figure 6 (left panels) shows the hourly dependence of array power production on the solar flux,
panel temperature, and wind speed. We have selected the 11 hours (0730–1730 LST) roughly centered on
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Figure 5. Relation between daily mean electrical power and daily mean panel
solar flux partitioned by season.

local noon and the months April to
September. The data has been averaged
in 100 W/m2 bins, 10∘C bins for panel tem-
perature (top), and 1 m/s wind speed bins
(bottom). We see that under full sun, mean
power production falls with high panel
temperature and low wind speed by about
5kW. The right panels show how Tpanel and
its excess temperature ΔT = (Tpanel -Tair)
depend on solar flux and wind speed. The
bottom right panel shows the simple and
elegant relation between panel ΔT, solar
flux, and wind speed. ΔT reaches 24∘C at
high solar flux and low wind speed. We see
that ΔT increases as the panels are heated
by increasing solar flux and decreases as
they are cooled by increasing wind speed.
Long-wave radiative cooling of the panels
also becomes a significant factor when
ΔT is large (not shown). The actual panel
temperature (upper right), (Tair + ΔT),
includes the additional complexity of the

seasonal cycle of temperature and wind. Figure 3 shows that in spring, wind speeds are higher when Tair is
lower.

The simple linear regression fit though zero of power on solar flux is the same for the hourly data, as for the
daily data shown in Figure 5.

Power = 0.0425 (±0.0000) ∗ SWP

(
R2 = 0.997

)
(3’)

If we add the dependence of power on Tpanel, scaled by the solar flux, multiple linear regression gives

Power = 0.0478 (±0.0001) ∗ SWP − 0.143 (±0.002) ∗
(

Tpanel ∗ SWP∕1000
) (

R2 = 0.998
)

(4)

For SWP = 950 W/m2, an increase of T panel by 40∘C reduces power production by 5.4 kW, which is about 13%.

4.3. Comparison With Ferrisburgh Solar Farm

Solar arrays are distributed power sources that are integrated by the grid, so it is important to understand
the spatial variation across the landscape. The Ferrisburgh Solar Farm is 63 km NNW of the GMP Rutland
solar site. Figure 7 compares daily mean Tair and SWP for the 3 years 2011–2013. Daily mean temperature
is highly correlated between the two sites (R2=0.986). We show the geometric mean of the regression lines
of y-on-x and x-on-y. Ferrisburgh, which is 133m (436ft) lower in elevation than the GMP site, is an average
0.85∘C warmer. However, there is uncertainty in this difference because the temperature sensors have not
been cross-calibrated.

For the daily mean panel solar flux, SWP, and therefore power production, which both depend on cloud
cover, the correlation is lower (R2=0.86). We see that the scatter between the two sites is less at the extremes,
which represent overcast and nearly clear skies. SWP measured at Ferrisburgh is 3.5% higher than at the
GMP site. This could represent less cloud cover at Ferrisburgh, but the comparison has some uncertainties.
First, the pyranometers have not been cross-calibrated, and their accuracy is only a few percent. Second, the
Ferrisburgh panels have a fixed elevation angle, close to 45∘, but the elevation of the GMP panels is changed
manually by 10∘ four times a year. The change dates are not precisely recorded (and depend on student
availability), but generally, panels are set at 55∘ October through January, at 35∘ May through August, and
45∘ over the spring and fall equinoxes.
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Figure 6. Relationships between panel solar flux, power production, panel temperature, and wind speed.

Figure 8 is a similar hourly intercomparison for the months April to September for the seven hourly means
between 0930 and 1530 LST. The scatter in hourly temperature is a little larger (R2=0.94) than for the daily
means, with a few outliers that could be caused by local rainfall events. Ferrisburgh is a little warmer by
0.6∘C for this near-noon data. The hourly SWP comparison shows much more scatter at intermediate val-
ues (200–700 W/m2), representative of broken cloud cover, than at low and high values representative
of overcast or nearly clear-sky conditions. For reference, we show the one-to-one line (long dashes) as
well as the geometric mean linear regression fit (short dashes). For these hourly data, the mean values for
SWP:Ferrisburgh and SWP:GMP are 601 and 553 W/m2, respectively. This is likely due to some combination of
reduced cloud cover at Ferrisburgh and some bias between the shortwave sensors. Under very clear skies in
June, with SWP> 950W/m2, SWP is 4% higher at Ferrisburgh than at the GMP site despite the panel elevation
being 35∘ at GMP and 45∘ at Ferrisburgh.

From a more general perspective, this poor hourly correlation under broken cloud conditions between solar
power arrays at 60 km spacing is acceptable, even beneficial, because the power grid can integrate and
smooth the cloud-related variability of power production from distributed solar arrays.

5. Solar Energy, Clouds, and the Daily Climate

The mean daily cycle of temperature is driven by radiation. At night, the earth’s surface cools to space
by long-wave radiation, reaching a minimum temperature, T min, typically at sunrise. The daytime solar
flux heats the surface, and the maximum temperature, T max, is typically reached in the early afternoon.
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DTR = T max − T min is the daily or diurnal temperature range (Equation (1)). Betts et al. [2013, 2015] showed
that in the warmer season months, DTR has a strong dependence on ECT, the fraction of the solar flux
transmitted by the cloud field. Snow cover reflects sunlight and reduces the diurnal cycle. In fact, DTR in
winter is dominated by synoptic temperature advection, and a winter analysis requires the averaging of
more data than we have here [Wang and Zeng, 2014], so we will exclude the winter months.

Figure 9 (left panel) shows the scatterplot of daily DTR against ECT for the months March to November. An
upward trend is visible, but there is a lot of day-to-day variation because daily advection of different air
masses can impact T max and T min. However, if we bin the data in 0.1 ranges of ECT, we get a linear increase
of mean DTR with ECT, which has little seasonal dependence (not shown). Under nearly clear skies, mean
DTR reaches 16∘C. The standard error bars shown are small because there are about 100 days in most bins.
The dashed line is the linear regression fit to the binned data with R2= 0.99.

Figure 9 (right panel) compares T max, T min (left scale) and DTR (right scale) from these GMP data with a longer
dataset from a Baseline Surface Radiation Network (BSRN) station, 25 km south of Regina, Saskatchewan
[Betts et al., 2015]. This BSRN station on the Canadian Prairies is further north at 50.2∘N, 104.7∘W, where the
period with snow cover is longer, so we include only the months April to October. This Canadian Prairie site
is primarily flat agricultural land, while the GMP site is on the edge of urban Rutland in a mixed Vermont
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near Regina, Saskatchewan.

landscape of agricultural land and forested hills and mountains. Mean wind speeds are also higher (3.5 m/s)
on the Canadian Prairies than at the GMP site. However, the broad trends of the coupling between ECT
and daily temperature are similar. T max and DTR increase with increased solar forcing represented by ECT,
while T min varies rather little. The sharp drop of T min under clear skies for the GMP site, when night-time
cooling is the strongest, might be a local effect of the close proximity of the GMP site to the Green Moun-
tain range. Pico Peak at 1,112m (3647ft) is only 11 km to the east. Using 600 years of Prairie station data,
Betts et al. [2015] show the effect of wind, relative humidity, and precipitation anomalies on this coupling
between DTR and ECT. However, we cannot replicate their analysis with our limited 4-year data set from the
GMP site.

6. Conclusion

This paper addresses the relationship between the solar flux, clouds, climate, and solar power generation
using readily accessible data that can be analyzed by high school students with expert guidance. Analysis
of solar flux data, power production, and climate data gives students skills in real-world data analysis, and
at the same time, an understanding of how clouds, climate, and renewable energy production are linked
together.

We analyzed 4 years of data (2010–2013) from the Green Mountain Power educational site on the north side
of Rutland Vermont and 3 years of data (2011–2013) from the Ferrisburgh Solar Farm. First, we quantified the
impact of clouds on the surface solar flux as a scaled ECT using corrected clear-sky fluxes from the European
Weather Centre reanalysis. We then mapped the monthly climatology of temperature, wind speed, cloud
transmission, solar flux, and power production for the GMP site. We derived a linear fit between daily power
production and daily panel solar flux, excluding winter when occasional snowfall reduces power produc-
tion. We then shifted to the hourly timescale and explored the interrelation of power production, panel
solar flux, panel temperature, and wind speed. We observed that electrical power drops by 13% at high
panel temperatures under low wind speeds.

The comparison of air temperature and panel solar flux between the GMP site and the Ferrisburgh Solar
Farm, which are 63 km apart, shows that daily and hourly temperature are well correlated. The correlation
of daily mean solar flux between the two sites is also quite good (R2 = 0.86). However, on hourly timescales,
panel solar flux is, not surprisingly, less well correlated (R2 = 0.63), particularly when there are broken cloud
fields. Given this poor correlation, however, the power grid can integrate and smooth the power production
from distributed solar arrays across Vermont.

Finally, we showed the relation between effective cloud transmission of the solar flux and the daily climate
represented by the maximum and minimum temperatures and the diurnal range of temperature. The nearly
linear increase of DTR and T max with ECT seen at the GMP site is similar to the relation seen in Canadian Prairie
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data. As more solar flux and climate data become available, further analyses will become possible. Because
these new solar flux data give insight into the coupling of clouds and climate as well as renewable power
production, we strongly recommend that these data be placed in open-access public archives in Vermont
and elsewhere for future analysis.

More broadly, this type of research has important social and educational implications. Involving students
in research into solar power and climate

1. provides tangible experience of scientific methods and analysis; and
2. spreads understanding of the links between clouds, climate, renewable power, and the societal energy

choices that will impact the future of the Earth system.

There has been much discussion about how the public makes sense of and participates in societal decisions
about science and technology [e.g., Nisbet and Scheufele, 2009]. This project has a specific Vermont context,
where the state, professional and citizens groups, and the utilities are actively planning for a sustainable
future. Our belief is that as our society makes major changes in our energy infrastructure in response to
climate change, we need to accelerate the technical education of high school students using real-world
data. The development of Earth-centered systems thinking in society is essential if we are to transform our
power system, better manage our waste streams, and move towards a sustainable society [Betts and Gibson,
2012].

Appendix A: Adjustment of the ERA-Interim Clear-Sky Fluxes

The ERA-Interim (abbreviated ERI) clear-sky fluxes are calculated from clear-sky temperature and water
vapor profiles and a climatological estimate of atmospheric aerosols. So, they show day-to-day variabil-
ity, but in a detailed comparison with Baseline Surface Radiation Network (BSRN) station data under clear
skies, Betts et al. [2015] found that SWCdn:ERI had a low mean bias of order −10W/m2. Comparing with the
daily mean SWdn from the GMP data here, which unlike the BSRN data is not calibrated back to international
standards, we found a similar low bias under clear skies, so we derived a correction as follows. Adapting the
methodology of Betts et al. [2015], we fitted a mean annual cycle to the daily mean SWCdn:ERI data

SWCFit∶ERI = 84 + 268 ∗ (SIN(𝜋 ∗ DS∕365))1.8 (A1)

where DS= DOY + 14 for DOY< 351, and DOY – 351 for DOY>350, and DOY stands for Day of Year. We did
not make the tiny adjustment for the leap year. This fit to the ERI data has a mean annual bias of 0.1±6.2
W/m2, with monthly mean biases that are≤5 W/m2. However, there are days when measured SWdn is greater
than both SWCdn:ERI and SWCFit:ERI, so we added a correction with the same DOY dependence as (A1) to
give

SWCdn = SWCdn∶ERI + 7 + 7 ∗ (SIN (𝜋 ∗ DS∕365))1.8 (A2)

These are the red dots in Figure 1, and the corresponding clear-sky fit shown is

Clear-skyFit = 91 + 275 ∗ (SIN (𝜋 ∗ DS∕365))1.8 (A3)
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