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FIFE Timeline

1987: Call from Bob Grossman: “We need your help”
1987: In Manhattan Kansas
1990-1992: aircraft and surface BL budgets

1992-3: Mean time-series from PAM and surface flux
stations used to evaluate ECMWF model

1992-3 winter: New ECMWF model cycle developed
July 1993: parallel testing of 4-soil-layer model

July 1993: Mississippi flood

August 1993: New ECMWF model cycle operational
Betts and Ball 1995: FIFE diurnal cycle climate
Data analysis took 5 years: ECMWF took 2 years
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“FIFE dataset”

Betts A. K. and J. H. Ball, 1998: FIFE surface
climate and site-average dataset: 1987-1989.
J. Atmos Sci , 55, 1091-1108

10 PAM sites and 10-22 Flux sites

“The biggest difficulty in generating an interannual
meteorological and radiation flux time series, averaged over the
FIFE site, was cleaning up the data.” : '

Range-filters and manual edit

Multi-site ensemble
— mean + SD:o

John Ball



Vector representation of diurnal cycle
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ECMWEF visit in summer 1992
Found Many Errors

SW,...n too high (Clear-sky flux error)
Ground flux too high (No skin layer)

No LH flux in October (SM storage error)
Toin-T, too small (Z,,,/Z,, error)

Diurnal cycle errors (no BL entrainment)

BR rises rapidly on sequential dry days
— T drifts too warm (SM storage error)

We will fix them - find more!
— Tony Hollingsworth




4-layer model matched to FIFE

Viterbo and Beljaars, 1995

Comparison of results of the old
model with FIFE observations,
referred to above, suggested
improvements in three areas of
subsurface hydrology and
evaporation:

a)

b)

first, a mechanism is
necessary to get
precipitation rapidly into
the ground where it can be
stored;

second, sufficient storage is
needed to represent several
weeks of evaporation
without rain;

third, seasonal and
interannual memory of soil
moisture anomalies needs
deep predicted reservoirs.

2718 JOURNAL OF CLIMATE VOLUME 8
T;
q, L
7 Ia Ta Ia Ta
I 11,74
<— M
el )
h' 63
e 94

FiG. 1. Schematic description of the structure of the land surface model. Double arrows mean diffusivity processes, single arrows represent
““drainagelike’” terms (soil drainage, snow melting, and throughfall/top infiltration for the skin reservoir), horizontal arrows represent surface
and subsurface runoff (bottom drainage is lost to the model and is therefore a runoff term). The bottom value of the resistance network for
evaporation is ¢,,(7,), except for the bare ground, where a relative humidity e is assumed [see Eq. (19)]. In the heat transfer panel, the snow
mass replaces a portion of the first model layer (M), and the horizontal arrow represents heat exchanges due to melting.



Impact of model change on 48-72hr
forecast precip. (July 9-25, 1993)

A) Precip: CY48-CY47
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t 30°N

20°N . 20°N

190°W

« New model gave good 3-day precipitation
forecast for Mississippi flood Beljaars et al. 1996




July 1993 Forecast Difference:
Wet or Dry soil on July 1,2,3
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* Increase of forecast monthly precipitation:

peaking at over 4 mm/day (>125 mm/month)
showed key role of soil moisture (global model)
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Boreal forest snow-albedo error

March-April 1996 850 hPa T day 5 error

1w LA 'E 1w rveriver:

March-April 1997 850 hPa T day 5 error

135'E

.75

Reduction of boreal forest snow-albedo improved every
single 5-day NH forecast for 850 hPa for March-April.
(Viterbo and Betts 1999)

.7-8
g5
.5~
.4-3
B .3--2
B 21
Bl (-2
Ha-3
3-4
B 4-5
Es5-6



Offline validation of ERA-40 surface
scheme (Vvan den Hurk et al. 2000)

e New ECMWEF tiled model

— 8 tiles (bare soil, high vegetation, low vegetation, high
vegetation with snow beneath, snow on low vegetation,
interception layer, sea-ice, open water).

— Coverage map of 18 vegetation types: land surface
parameters vary per vegetation type.

— A new set of environmental controls on canopy
transpiration is introduced: including response to air
humidity deficit; no water extraction from frozen soils

— On top of the soil, a new single snow layer is introduced
with prognostic equations for albedo and density, and
separate energy balance equations for high and low
vegetation tiles with snow.



ERA-40
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BOREAS to BERMS

Betts, A.K,, J. Ball, A. Barr, T. A. Black, J. H. McCaughey and P.
Viterbo, (2006), Assessing land-surface-atmosphere coupling in the ERA-

(28)

— Biases in ERA-40 of temperature and humidity are small

— Model has a high bias in evaporation
— And a low bias of reflective cloud
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Forecast
to
Climate
Scale

Improved spring
albedo, 2000-2008,
from improved snow
model. Multisite global
calibration, including
BERMS

(Dutra et al. 2010)

a) Modis Albedo Spring
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FiG. 12. (a) Mean observed maps of spring albedo by MODIS for the period 2000-08 and differences between
simulated albedo and MODIS for (b) CTR and (¢) NEW. The differences (b} and (c) show only snow-covered grid
boxes with <-50% MODIS missing data. Note the different color scales between panel (a) and panels (b) and (c).




Land Surface Model evolution

2000/06

2007/11 2009/03

2009/09 2010/11

® TESSEL

Van den Hurk et al. (2000)
Viterbo and Beljaars (1995),
Viterbo et al (1999)

Up to 8 tiles (binary Land-Sea mask)
GLCC veg. (BATS-like)

ERA-40 and ERA-| scheme

® Hydrology-TESSEL

Balsamo et al. (2009)
van den Hurk and
Viterbo (2003)

Global Soil Texture (FAO)
New hydraulic properties

Variable Infiltration capacity &
surface runoff revision

® NEW SNOW ®

NEW LAI

Dutra et al. (2010) Boussetta et al. (2011)

Revised snow density New satellite-based

Liquid water reservoir | saf.Area-indes

Revision of Albedo
and sub-grid snow PY
cover

SOIL Evaporation
Balsamo et al (2011) based on

Mahfouf Noilhan (19921)

Land surface tiles in ERA40 surface scheme

NASA-GSFC, 20/1/2012 - G.

Balsamo




ECMWF operational model (2016)

 Many land-surface and BL improvements
tested against FIFE/BOREAS (+other datasets)
 Major changes: 1993 to 2016

— Horizontal resolution: 108km to 9km
— Vertical resolution: 31 to 137 levels

e ERA-5 in production
— Hourly, 72 degree global reanalysis: 1979-20170on
— Current operational model physics



Fully coupled CO, analysis and forecast?

 Boussetta, S., G. Balsamo, A. Beljaars et al. (2013): Natural land
carbon dioxide exchanges in the ECMWEF integrated forecasting
system: Implementation and offline validation. JGR

— 34 sites including OA and OBS (BERMS)

— The ECMWEF land surface model has been extended to include a CO,
module, relating photosynthesis to radiation, atmospheric CO,, soll
moisture, and temperature: with the option of deriving a canopy
resistance from photosynthesis

« Agusti-Panareda, A. et al. (2016): A biogenic CO, flux adjustment
scheme for the mitigation of large-scale biases in global atmospheric
CO, analyses and forecasts. Atmos. Chem. Phys., 16.

— Forecasting atmospheric CO, daily at the global scale with a good accuracy like
it is done for the weather is a challenging task. However, it is also one of the key
areas of development to bridge the gaps between weather, air quality and
climate models. The challenge stems from the fact that atmospheric CO, is
largely controlled by the CO, fluxes at the surface, which are difficult to
constrain with observations.
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Global CH, forecasts

Sunday 02 October 2016 00UTC CAMS Forecast t+114 VT: Thursday 06 October 2016 18UTC
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Kabat et al. (2004): Vegetation,
Water, Humans and the Climate

Particularly well documented is the work by Betts
and his co-workers on the FIFE data and more
recently on BOREAS data to improve ECMWF and
NCEP/NCAR models. Typical improvements include
the soil hydrology, evaporation, soil heat flux and
boundary layer parameterisations. Recently the
impacts of frozen soil and snow have been
assessed. The sum of these improvements has led
to significant improvements in the skill of these
forecast models (see Sect. A.4.5.2).



Ray Desjardins (2012)

e Senior Scientist: AG-Canada
— TwinOtter flux aircraft in BOREAS

* “We need your help to understand the
Prairie climate”

— OK, if you access and preprocess the
Environment Canada hourly data

 FIFE and BOREAS: open data access!




15 Prairie stations: 1953-2011
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Snowfall and Snowmelt
Winter and Spring transitions
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 Temperature falls/rises about 10K with first snowfall/snowmelt

 Snow reflects sunlight; shift to cold stable BL
— Local climate switch between warm and cold seasons
— Winter comes fast with snow

Betts et al. 2014a



Impact of Snow on Climate

20 : 20
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- Two non-overlapping climates
Betts et al. (2016)



Interannual variability of T
coupled to Snow Cover

More snow cover - Colder temperatures

 Alberta: 79% of variance
e SlopeT,, -14.6 (+ 0.6) K

Alberta, Canada
October to April

Freezing

10% fewer snow days

= 1.5K warmer
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OPAQUE:MooseJaw

Opaque Cloud (Observers)
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Diurnal cycle: Clouds & Snow
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Monthly
diurnal
climatology
(by snow
and cloud)

Again two
distinct
climates
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Impact of Snhow

 Distinct warm and cold season states

e Snow cover is the “climate switch”

e Prairies: AT =-10°C (winter albedo = 0.7)
 Vermont: AT = -6°C (winter albedo 0.3 to 0.4)

 Snow transforms BL-cloud coupling
e No-snow ‘Warm when clear’ - convective BL
e Show ‘Cold when clear’ - stable BL



Warm Season Climate: T>0°C
(May — October with no snow)

e Hydrometeorology

— with Precipitation and Radiation

— Diurnal cycle of T and RH

— Cannot do coupling with just T & Precip !

e Dailly timescale is radiation driven
— Night LW, ; day SW,, (and EF)
« Monthly timescale: Fully coupled

(Long timescales: separation) Betts et al. 2014b; Betts
and Tawfik 2016)



Monthly Regression on Cloud
and lagged Precip. anomalies

 Monthly anomalies (normalized by STD of means)
— opaque cloud (CLD)
— precip. (PR-0, PR-1, PR-2)

e current, previous 2 to 5 months

ODTR = K+ A*6CLD + B*6PR-0 + C*6PR-1 + D*6PR-2 ...
(Month) (Month) (Month-1) (Month-2)
Soil moisture memory

April: memory of entire cold season (snow, solil ice)
back to November freeze

June, July, Aug: memory of moisture back to March




April: Memory of Precip. to November
1953-2011: 12 stations (619 months)

Variable |6DTR oT, oRH oP; o1«
R2= 0.67 0.48 0.66 0.66

Cld-Apr |-0.52+0.02 -0.78+0.04 |0.76+0.03 [-0.93+0.04
PR-Apr -0.04+0.01 0.00+0.03 |0.14+0.02 |-0.13+0.03
PR-Mar |-0.13£0.02 -0.25+0.04 |0.25+0.03 [-0.30+0.04
PR-Feb -0.09+0.02 -0.15+0.05 |0.19+0.04 |-0.24+0.04
PR-Jan -0.10£0.02 -0.20+0.04 |0.19+0.03 [-0.22+0.04
PR-Dec -0.06+0.02 -0.07+0.05 |0.20+0.04 |-0.24+0.04
PR-Nov -0.09+0.02 -0.14+0.04 |0.08+£0.03 [-0.12+0.04




Summer Precip Memory
back to March

JULY 1953-2011: 12 stations (615 sta-years)

JULY SDTR SRH, ) I 3Qy,

R? 0.68 0.62 0.62 0.26
Cld-July | -0.58+0.03 0.63+0.04 -0.80+0.05 | 0.04:£0.07
PR-July | -0.24+0.02 0.35+0.03 -0.42+0.04 | 0.40+0.05
PR-June | -0.150.01 0.27+0.02 -0.36+0.03 | 0.39+0.04
PR-May | -0.12+0.02 0.13+0.03 -0.20+0.04 | 0.24+0.06
PR-Apr | -0.050.03 0.10+0.05 -0.1120.06 | 0.26+0.09
PR-Mar 0.160.07 -0.19+0.09 | 0.36:0.14

June, July, Aug have precip memory back to March




Cloud anomalies from Climate anomalies
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So?

 We need to revisit the boreal forest with
these long-term Canadian hourly
datasets — with hourly opaque cloud



Climate Change?

e Multi-model ensembles
— More work on model biases still needed
— Prairie data a new 60-year reference set

 Politics + ethics, not science, now the issue
— Paris agreement step forward

— China moving aggressively; planning to capture
global renewable market; systems engineering

— Libertarian billionaires purchased Congress, but
got a demagogue as candidate

— Fictitious global conspiracy: collapse looming



Conclusions

* FIFE and BOREAS were transformative

— Their time-series of meteorology, radiation
and surface fluxes, soil and vegetation
data gave us ground truth for forecast
models — up to seasonal scale

— The “FIFE dataset” was used to test every
land-surface model for a decade: till global
FLUXNET

— BOREAS/BERMS led to new forest models
and several generations of snow models

— Understanding from forecast models still
being transferred to Earth System Models.





