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Why is mixed layer cooler than the ocean SST?
LW cooling = -2.5 K/day

Clouds redistribute heat and water and modify radiative balance

Equilibrium for whole layer:

0 = (g/Cp) �Rnet + �0 �� + �T (�T  - �M)
      -40         +10         +30 W m-2

          cooling   surface flux   subsidence

Surface velocity scale: �0 = �V0 CD � 90hPa/day
Subsidence: �T � 40 hPa/day
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Why is the mixed layer not saturated,
as the air blows over ocean?
Evaporation from ocean is balanced
by subsidence of dry air above.

0 = �0 (qS(SST) - qM) +�T (qT - qM)

qM = [�0 qS(SST) + �T qT]/(�0 + �T)   

         A weighted average
 qM  = [90*22 +40*5]/130  = 16.7 g/kg

so �EM � 346K
cloud-base � 960hPa

Can think of the two balances on
a ‘conserved parameter’ diagram:
“Mixing” of surface point and
850hPa point, modified by
radiation.



4

-20 0 20 40 60 80 100 120 140 160 180 200 220 240

1000

975

950

925

900

875

850

Energy flux (Wm-2)

Mass flux (10-3 Kg m-2s-1)

p 
(h

P
a)

 FCpθ
 FLq

 Ω q

Cloud-base

Relate equilibrium structure
to convective fluxes: Fq, F�

[illustration]

Assume � = 40hPa/day in cloud
layer, below cloud-base decreases
linearly to zero at surface. 
Assume radiative cooling
��Rad/�t = -2.4 K/day

Equilibrium means steady state
[assume horizontally homogeneous]

0 = �Fq/�p + � �q¯ /�p
0 = �F

�
/�p + � ��¯ /�p + ��Rad/�t

[where Fq and F�
 represent the convective fluxes of total water and ‘liquid water

potential temperature’ above cloud-base]

Integrate to give fluxes from �, � and q profiles, and ��Rad/�t.
This gives equilibrium fluxes [in units of W m-2] from profiles

Simple mass-flux model [illustration]
Can couple fluxes with a mass flux transport model for shallow
convection

Fq = �q (qc - q) with qc = qB a cloud-base value of 16.54 gkg-1

and compute the �q shown in the figure.

Shallow clouds transport mass out of sub-cloud layer and distribute
through cloud layer. Convective fluxes can be represented by this
mass transport model.
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Shallow Cumulus

– non-precipitating
– net LH = 0
– but transport heat because condense

water, advect it upward and
reevaporate it  [a “refrigerator”]

– buoyant, because of condensation but
still ‘cold’, because of liquid
– conserved variables:   �E = � + Lq/Cp

       �L = � - L�/Cp

       qT = q + �

– represent by mass transport of air with sub-cloud properties to
higher levels

– equilibrium structure over ocean is balance of convective transports,
subsidence, and radiative flux divergence (cooling)
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–  Similar to other thermodynamic
diagrams; just �, q as axes

Dry virtual potential temperature
   �v = �(1+.608*q/1000)
– vapor is less dense 
– SP of equal density
– Slopes 1K every 6g kg-1

     [Could use as axis]

Wet virtual potential temperature
– if parcels carry liquid .. Denser; ��=2 g kg-1/100hPa
– �v = �(1+.608*q/1000 -�/1000)
– line of equal density
  (��/�p) �esv � 0.9 (��/�p) �es
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Parameterizing shallow convection 
with a mixing line representation

– parameterize a cloud field: what do these simple diagnostic studies
tell us?
– two approaches: 

a) parameterize fluxes, and their gradients: 
eg with mass flux model; say cloud-base q-flux = surface q flux
 [Problem from a ‘climate perspective is that system may drift to
either dry or cloudy state]

b) parameterize structure: eg ‘mixed
layer’ or ‘mixing line’.

Single mixing line can represent
whole BL structure of both clear and
cloudy air.

Unsaturated air: find T, Td at p by
drawing lines of constant � and q
Cloudy air: find T, Td [for total
water] at p by drawing lines of
constant �es and q

A type of convective adjustment.

[example: advanced students read paper/Betts and Ridgway,1989]
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How does ocean BL and land differ?

Radiative cooling
SH, subsidence

Evaporation and
subsidence

Stays a little cooler than ocean and sub-saturated: 
surface wind and subsidence control evaporation
[ocean store suns heat; diurnal cycle small]

LAND: what are the essential differences??

Sun heats surface and drives large diurnal cycle; daytime unstable; 
cools radiatively at night; at night stable BL

Surface not saturated.. Except inside leaves.
Sun drives evaporation through photosynthesis 

[coupled to CO2 uptake]
Subsidence of dry air still plays key role, averaged over 24hrs.

Need to understand mean state and diurnal cycle
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Figure 1 Coupling of CO2 and water vapor
profiles of June 8 at 1719 UTC (LST=UTC-6h)
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Coupling of CO2 and water vapor through the BL
BOREAS Northern Study area [Thompson, Manitoba]
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Fig. 19a..  Relation between height of cloudbase 
and RH as surface temperature varies. 
[Note independent of surface pressure]
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Fig.19b. As Fig. 4a for ratio of PLCL to surface
pressure p
[Note dependence on T is weak]

RH, LCL and pressure height of cloud-base are fundamental BL quantities

– Over land, there is link to evaporative resistance

Dry soils � large resistance to evaporation

Extra resistance produces drop of saturation from inside leaf to outside leaf

Reduces relative humidity (RH) and increases BL depth
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Figure 20. Dependence of stomatal
resistance on SWC, and SWnet
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Figure 21. Dependence of BL depth on
SWC and SWnet

0.15 0.20 0.25 0.30 0.35

40

60

80

100

120

140

SWC

LH
 (

W
 m

-2
)

SW
net

 (W m-2)

 150 

 200

 250

Figure 22. Latent heat on BL depth
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Figure 23. Sensible heat on BL depth

We can create an “equilibrium model” by averaging over 24hour cycle
– how does mean BL depth and fluxes depend on soilwater and solar forcing?

[see Betts: J. Hydrometeorol. 2000]
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Evaporation and photosynthesis are linked to same vegetative resistance

q and CO2 at
equi l ibr ium
are functions
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CO2 and water vapor are tightly
coupled



Coupling between CO2, water vapor, 
temperature and radon and their fluxes in an 

idealized equilibrium boundary layer over land.
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Idealized equilibrium boundary layer over 
land

• Extension of Betts (2000) in J. Hydromet.
• Idealization is to average over diurnal cycle
• Extensions
- add vegetation model 
- CBL and ML equilibrium
- Simple coupling of radiation to clouds



Purpose

• Couple mixed layer ‘equilibrium’ of 
potential temperature, water vapor, CO2
(and radon) with the surface energy and 
water budgets and net ecosystem exchange 
(and surface radon flux)

• Suggest that regional ML budgets may give 
useful constraints on regional carbon 
budgets.



Idealized equilibrium model

• Surface energy budget: diurnal mean
• Radiative fluxes coupled through cloud cover
• Photosynthetic controlled evaporation, linked to 

stomatal resistance, calculated from Ball-Berry 
model, fitted to Wisconsin tall tower data.

• ML and CBL equilibrium

• 45 equations … read the paper



Equilibrium solutions

• Sensitivity of vegetative resistance and ML 
depth to soil water and net short-wave
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Surface energy fluxes and EF as 
a function of soil water content
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Surface energy fluxes and EF as 
a function of ML depth: PLCL
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ML properties as a function of 
soil water content
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ML properties as a function of 
ML depth: PLCL
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Photosynthesis and respiration
Coupling of CO2m to qm and NEE
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Conclusions-1

• SWC is primary control on NEE and on 
evaporation through stomatal resistance

• Dry soil: equilibrium depth of the ML 
increases sharply, as reduced evaporation 
leads to a warmer drier equilibrium

• LCL is powerful constraint on ML depth
• Radiative impact of clouds on equilibrium



Conclusions-2

• Two different perspectives: 
- as a function of SWC 
- as function of cloud-base height

• Important coupling between ML q and CO2, 
and between NEE exchange and CO2 

- useful for carbon budget estimates

Preprint at ftp://members.aol.com/bettspapers/BHB_JGR.pdf



Take away these ideas

Ocean equilibrium: balance of radiative cooling, subsidence and surface
fluxes

giving a typical tradewind BL with cloud-base 50hPa above
surface and a 150hPa deep shallow cumulus layer....
[Solar heating absorbed in deep ocean mixed layer]

Land diurnal cycle driven by solar heating, but equilibrium similar to
ocean, except a drier mean state because additional ‘vegetative’
resistance to evaporation at surface. 

CO2 and water vapor coupled in BL over vegetation.
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