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Why is mixed layer cooler than the ocean SST?
LW cooling = -2.5 K/day

Clouds redistribute heat and water and modify radiative balance

Equilibrium for whole layer:

0 = (g/Cp) �NT    + �0 �� + �T (�T  - �M)
      -40         +10         +30 W m-2

          cooling   surface flux   subsidence

Surface velocity scale: �0 = �V0 CD � 90hPa/day
Subsidence: �T � 40 hPa/day
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Conserved variable diagram

Why is the mixed layer not saturated,
as the air blows over ocean?
Evaporation from ocean is balanced
by subsidence of dry air above.

0 = �0 (qS(SST) - qM) +�T (qT - qM)

qM = [�0 qS(SST) + �T qT]/(�0 + �T)   

         A weighted average
 qM  = [90*22 +40*5]/130  = 16.7 g/kg

so �EM � 346K
cloud-base � 960hPa

Can think of the two balances on
a ‘conserved parameter’ diagram:
“Mixing” of surface point and
850hPa point, modified by
radiation.
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Relate equilibrium structure
to convective fluxes: Fq, F�

[illustration]

Assume � = 40hPa/day in cloud
layer, below cloud-base decreases
linearly to zero at surface. 
Assume radiative cooling
��Rad/�t = -2.4 K/day

Equilibrium means steady state
[assume horizontally homogeneous]

0 = �Fq/�p + � �q¯ /�p
0 = �F

�
/�p + � ��¯ /�p + ��Rad/�t

[where Fq and F�
 represent the convective fluxes of total water and ‘liquid water

potential temperature’ above cloud-base]

Integrate to give fluxes from �, � and q profiles, and ��Rad/�t.
This gives equilibrium fluxes [in units of W m-2] from profiles

Simple mass-flux model [illustration]
Can couple fluxes with a mass flux transport model for shallow
convection

Fq = �q (qc - q) with qc = qB a cloud-base value of 16.54 gkg-1

and compute the �q shown in the figure.

Shallow clouds transport mass out of sub-cloud layer and distribute
through cloud layer. Convective fluxes can be represented by this
mass transport model.
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Shallow Cumulus

– non-precipitating
– net latent heat release = 0
– but transport heat because condense

water, advect it upward and
reevaporate it  [a “refrigerator”]

– buoyant, because of condensation but
still ‘cold’, because of liquid
– conserved variables:   �E = � + Lq/Cp

       �L = � - L�/Cp

       qT = q + �

– represent by mass transport of air with sub-cloud properties to
higher levels

– equilibrium structure over ocean is balance of convective transports,
subsidence, and radiative flux divergence (cooling)
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Conserved Variable diagram – 2

–  Similar to other thermodynamic
diagrams; just �, q as axes

Dry virtual potential temperature
   �v = �(1+.608*q/1000)
– vapor is less dense 
– 'Saturation Points' of equal density
– Slopes 1K every 6g kg-1

     [Could use as axis]

Wet virtual potential temperature
– if parcels carry liquid .. Denser; ��=2 g kg-1/100hPa
– �v = �(1+.608*q/1000 -�/1000)
– line of equal density
  (��/�p) �esv � 0.9 (��/�p) �es
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Parameterizing shallow convection 
with a mixing line representation

– parameterize a cloud field: what do these simple diagnostic studies
          tell us?
– two approaches: 

a) parameterize fluxes, and their gradients: 
eg with mass flux model; say cloud-base q-flux = surface q flux
 [Problem from a ‘climate perspective is that system may drift to
either dry or cloudy state]

b) parameterize structure: eg ‘mixed
layer’ or ‘mixing line’.

Single mixing line can represent
whole BL structure of both clear and
cloudy air.

Unsaturated air: find T, Td at p by
drawing lines of constant � and q
Cloudy air: find T, Td [for total
water] at p by drawing lines of
constant �es and q

 Often useful to have a model for structure; eg to compute radiation

          [example: Betts and Ridgway,1989]



Climate equilibrium in the Tropics

Trade cumulus balance 
between ocean evaporation 
and sinking of dry air

Shallow Trade-wind cumulus 
flowing into deep precipitating 
tropical convergence zone



Tropical Climate equilibrium
[Betts and Ridgway, JAS 1988,1989]

• Consider subsiding branches of 
tropical circulation, like the Trades. 

[Moisture evaporated here flows into the 
convergence zones and tropical disturbances where 
it is precipitated]

• Energy balance closures give 
radiative-convective equilibrium; but 
there are several important timescales



1. Subcloud layer thermal balance 
[one-day timescale]

H + HB = ∆NB
Where radiative cooling of sub-cloud layer, 

∆NB ≈ 10Wm-2 [-2.5K/day * 50hPa]
Cloud-base flux: HB ≈ - 0.2 H [surface flux]
Giving H = ∆NB/1.2 ≈ 8 Wm-2

So radiative cooling of sub-cloud layer gives 
small sea-air temperature difference and 
small sensible heat flux. 
[Bowen ratio over tropical oceans is small.]



2. CBL budgets
[1 to 2-day timescale]

Heat
H   +  (Cp/g)ωT(θT-θM)   =   ∆NT

surface     subsidence warming         CBL radiative 
cooling

Water
λE + (L/g)ωT(qT-qM)   =     0
surface     subsidence drying

λE linked to subsidence ωT
Given ωT, (∆NT-H) gives θT and CBL-top



3. Tropospheric energy balance  
[10-day timescale]

The atmospheric energy balance averaged over the tropics 
can be written
H + λE = ∆NTR + atmospheric export from tropics

Where radiative cooling of troposphere ∆NTR ≈ 150 Wm-2

So surface evaporation
λE ≈ 150 - 8 ≈ 142 Wm-2

The mechanism is that the radiative cooling drives the 
subsiding branch, bringing dry air into the CBL, which 
balances evaporation locally; and the moisture flows into 
the convergence zones, condensing and releasing latent 
heat which balance the radiative cooling.



4. Ocean mixed layer and SST     
equilibrium    [>100day timescale]

H + λE = N + oceanic export from tropics

Where N is the net incoming radiative flux at the 
surface [shortwave + longwave]

This is the long-time-scale equilibrium that controls 
SST. [The big terms are the shortwave heating and the 
evaporation, but the downward longwave flux depends 
on water vapor ‘greenhouse effect’]

Solve the coupled system using 1 and 2 [plus 3, 4].
[Betts and Ridgway, 1989]



Vary SST with fixed wind-speed

• Evaporation increases with SST
• θE increases with SST [and cloud-base descends  

a little]

Uses 1,2,3



Vary wind-speed with fixed SST; ωT

• Evaporation increases with wind
• θE increases as cloud-base descends, moving 

towards saturation at SST

Uses 1,2



SST equilibrium sensitive to LW

• Humid upper 
troposphere and 
equilibrium SST 
increases 
[greenhouse]

Uses 1,2,3,4



SST sensitive to CO2

• Tropical climate 
sensitivity approx 
2K for doubling of 
CO2

• Sensitivity 
increases if upper 
troposphere moist

Uses 1,2,3,4
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How does ocean BL and land differ?

Radiative cooling
SH, subsidence

Evaporation and
subsidence

Stays a little cooler than ocean and sub-saturated: 
surface wind and subsidence control evaporation
[ocean store suns heat; diurnal cycle small]

LAND: what are the essential differences??

Sun heats surface and drives large diurnal cycle; daytime unstable; 
cools radiatively at night; at night stable BL

Surface not saturated.. Except inside leaves.
Sun drives evaporation through photosynthesis 

[coupled to CO2 uptake]
Subsidence of dry air still plays key role, averaged over 24hrs.

Need to understand mean state and diurnal cycle
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Figure 1 Coupling of CO2 and water vapor
profiles of June 8 at 1719 UTC (LST=UTC-6h)
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Figure 2. Profiles through the mixed layer on four
days in June, showing tight coupling between
water vapor and CO2 structure.  Illustrative slope
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Coupling of CO2 and water vapor through the BL
BOREAS Northern Study area [Thompson, Manitoba]



Daily mean fluxes give model 
‘equilibrium climate’ state

• Map model climate state and links 
between processes using daily means

• Think of seasonal cycle as transition 
between daily mean states

+ synoptic noise



SMI       Rveg RH       LCL LCC

• RH gives LCL   [largely independent of T]
• Saturation pressure conserved in adiabatic motion
• Think of RH linked to availability of water 



What controls daily mean RH anyway?

• RH is balance of subsidence velocity and 
surface conductance 

• Subsidence is radiatively driven [40 hPa/day] 
+ atmospheric dynamics

• Surface conductance 
Gs = GaGveg /(Ga+Gveg)      [Gveg=1/Rveg]

[30 hPa/day for Ga =10-2; Gveg= 5.10-3 m/s]



ERA40: soil moisture → LCL and EF

• River basin daily means
• Binned by soil moisture and Rnet



ERA40:  Surface ‘control’

• Madeira river, SW Amazon
• Soil water LCL, LCC and LWnet



ERA-40 dynamic link 
(mid-level omega)

• Ωmid → Cloud albedo, TCWV and Precipitation



Take away these ideas

Ocean equilibrium: balance of radiative cooling, subsidence and surface
fluxes

giving a typical tradewind BL with cloud-base 50hPa above
surface and a 150hPa deep shallow cumulus layer....
[Solar heating absorbed in deep ocean mixed layer]   

      Fluxes and BL θE go up with SST and wind-speed

Land diurnal cycle driven by solar heating, but equilibrium similar to
ocean, except a drier mean state because additional ‘vegetative’
resistance to evaporation at surface. 

CO2 and water vapor coupled in BL over vegetation.
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