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ABSTRACT

General circulation models (GCMs) are essential for projecting future climate; however, despite the rapid

advances in their ability to simulate the climate system at increasing spatial resolution, GCMs cannot capture

the local and regional weather dynamics necessary for climate impacts assessments. Temperature and pre-

cipitation, for which dense observational records are available, can be bias corrected and downscaled, but

many climate impacts models require a larger set of variables such as relative humidity, cloud cover, wind

speed and direction, and solar radiation. To address this need, we develop and demonstrate an analog-based

approach, which we call a ‘‘weather estimator.’’ The weather estimator employs a highly generalizable

structure, utilizing temperature and precipitation from previously downscaled GCMs to select analogs from a

reanalysis product, resulting in a complete daily gridded dataset. The resulting dataset, constructed from the

selected analogs, contains weather variables needed for impacts modeling that are physically, spatially, and

temporally consistent. This approach relies on the weather variables’ correlation with temperature and

precipitation, and our correlation analysis indicates that the weather estimator should best estimate evapo-

ration, relative humidity, and cloud cover and do less well in estimating pressure and wind speed and di-

rection. In addition, while the weather estimator has several user-defined parameters, a sensitivity analysis

shows that the method is robust to small variations in important model parameters. The weather estimator

recreates the historical distributions of relative humidity, pressure, evaporation, shortwave radiation, cloud

cover, and wind speed well and outperforms a multiple linear regression estimator across all predictands.

1. Introduction

Climate change will impact socioecological systems

(Staudinger et al. 2012), and evaluating local climate

impacts requires regional climate data at fine spatial and

temporal resolutions that match the modeled processes.

While general circulation models (GCMs) provide

projections of an extensive set of variables at spatial

scales of ;100km, these scales are far too coarse to

fulfill the needs of a range of impacts models (Hansen

et al. 2006; Ingram et al. 2002). To address this issue,

coarse-scale variables can be transformed into finer-

scale variables through the process of downscaling.

However, most downscaled products only provide pre-

cipitation and temperature, whereas impacts models

often need a broader suite of variables such as humidity,

cloud cover, wind speed and direction, and solar radia-

tion. Historically, these variables have not been the focus

of downscaling approaches, partially because observations

of these weather variables are not as extensive. While

regional climate models (RCMs) can be used to produce

this suite of downscaled metrics (Giorgi et al. 2009;
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Mearns et al. 2009; van der Linden and Mitchell 2009),

RCMs are nontrivial to implement, requiring special-

ized expertise, extensive model parameterization, and

high-performance computing resources. Statistical down-

scaling is an appealing alternative and the relative pros and

cons of dynamical versus statistical downscaling are sum-

marized in Fowler et al. (2007). In this paper, we adopt a

statistical downscaling approach, mainly for its computa-

tional efficiency and flexibility, developing an analog-

based method that systematically produces a full suite

of gridded, meteorological data that have not been

traditionally available.

Statistical downscaling methods are generally defined

as techniques that relate large-scale variables (predictor)

to smaller-scale variables (predictand). This general

definition gives statistical downscaling the advantage

of being extremely flexible, although this has led to a

proliferation of approaches that can be difficult to neatly

categorize (Rummukainen 1997; Maraun et al. 2010;

Vaittinada Ayar et al. 2016). Vaittinada Ayar et al.

(2016) break statistical downscaling methods into four

categories: model output statistics (MOS), transfer

functions (TFs), stochastic weather generators (WGs),

and weather typing (WT)-based methods. The last

three approaches, referred to as ‘‘perfect prognosis’’

downscaling, require temporal synchronicity between

the predictor and predictand datasets for training,

while the MOS approach works directly on model

outputs, relating distributional characteristics between

the predictors and predictands without calibration

(Maraun et al. 2010).

MOS downscaling, which has a long history in nu-

merical weather forecasting (Wilks 2006), relates mod-

eled large-scale predictors to observed local-scale

predictands. MOS techniques relate distributional

characteristics between the predictors and predictands

and the main MOS methods are outlined in Maraun

et al. (2010). For instance, bias correction with spatial

disaggregation (BCSD; Wood et al. 2004) is a MOS

method using quantile mapping that has been applied

extensively in impact assessments in the United States.

TFs are often mathematical functions used to relate

large-scale to local-scale observations. For example,

Vaittinada Ayar et al. (2016) use generalized additive

models as a representative TF method in their down-

scaling intercomparison project and Wilby et al. (2002)

developed a multiple regression-based tool that has

been widely applied (e.g., Ahmed et al. 2013). These TF

methods are simple to implement but can underestimate

variance.

WGs are statistical models that simulate realistic se-

quences of weather variables based on parameters de-

rived from observed climate (Wilks and Wilby 1999).

Comprehensive reviews of WGs can be found in Wilks

(2010, 2012). WGs are commonly used for hydrologic,

environmental management, and agricultural applica-

tions (Wilks 2002). However, significant challenges arise

when applying stochastic WGs to climate change impacts

assessments, especially for multisite or two-dimensional

applications such as creating a gridded data product, be-

cause while multisite WGs span a range of sophistication

and structures, typical limitations include the inability to

reproduce nonstationarity in future projections, spatial

covariance across sites, covariance between variables,

and temporal persistence of variables (Steinschneider

and Brown 2013; Srikanthan and Pegram 2009).

Last, WT-based approaches involve the identification

of large-scale circulation patterns that can be related

to phenomenon at the local scale. These methods are

appealing but require careful choice of the predictor

variable(s) (Jézéquel et al. 2018; Maraun et al. 2010).

Analogs are a particular WT method whereby similar

states of the atmosphere can be used to inform the

generation of historical weather data or climate pro-

jections, typically at the daily time scale. A common use

of analogs in statistical downscaling is to develop a set of

one or more predictors (e.g., temperature, precipitation,

geopotential heights, surface pressure) from a spatially

coarse dataset that can be used to select one or a combi-

nation of analogs from a spatially fine dataset (Abatzoglou

and Brown 2012; Hidalgo et al. 2008; Raynaud et al. 2017;

Zorita and von Storch 1999). Analog approaches are often

used to downscale temperature and precipitation

(Abatzoglou and Brown 2012; Hidalgo et al. 2008;

Maurer et al. 2010; Pierce et al. 2014), but have also

been used to downscale wind, humidity, and evapo-

transpiration (Abatzoglou and Brown 2012; Martín
et al. 2014; Pierce and Cayan 2016; Tian and Martinez

2012), as well as to develop meteorological reconstruc-

tions from sparse data (e.g., Schenk and Zorita 2012;

Fettweis et al. 2013; Yiou et al. 2013). Statistical down-

scaling approaches can also be hybrids; for example, an-

alogs can be used to design WGs (Yiou 2014). Analog

approaches have the advantage that they can preserve the

daily sequences of the GCM (Pierce et al. 2014), which

can be relevant for impacts modeling, but also provide a

broad suite of gridded daily weather variables that have

not been made readily available for use by impacts

models.

As mentioned previously, most of the focus of these

statistical downscaling methods has been on precipita-

tion and temperature, especially in terms of available

gridded products. For instance, precipitation and tem-

perature data that have been downscaled to 1/88 resolu-
tion across the continental United States using BCSD

and several different analog approaches can be directly
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downloaded from the data repositories of phases 3 and 5

of theCoupledModel Intercomparison Project (CMIP3;

CMIP5) (available at http://gdo-dcp.ucllnl.org; Brekke

et al. 2013). These precipitation and temperature data

can provide an excellent starting point for meeting the

needs of the impacts modeling community as they are

readily accessible. However, there is a need for a general

method that leverages these readily accessible, down-

scaled temperature and precipitation data to provide the

full suite of meteorological data needed for impacts

assessment.

In this paper, we develop and demonstrate an analog-

based approach, which we call a ‘‘weather estimator,’’

that is practical, straightforward, and flexible. The

weather estimator utilizes temperature and precipita-

tion from previously downscaled GCMs (Maurer et al.

2010; Winter et al. 2016) to systematically select analogs

from a reanalysis product, creating a complete daily

gridded climate dataset containing a broad suite of

weather variables needed for impacts modeling. This

approach allows impacts modelers to create a complete

daily gridded climate dataset from a paired GCM and

reanalysis product; specifically, any GCM product con-

taining temperature and precipitation and any reanalysis

product that has a relatively complete set of weather

variables with realistic covariance across space and

variables. The weather estimator is encapsulated in an

R package (https://www.r-project.org; accessed 12 August

2017) named ‘‘weatherAnalogs’’ and available as free

and open-source software, making it available to the

wider community.

2. Data and methods

a. Study area

The weather estimator is demonstrated over the Lake

Champlain basin (Fig. 1), which includes western

Vermont, northeastern New York State, and south-

ern Quebec, Canada. The Green Mountains (running

north–south through central Vermont) and a portion of

the Adirondack Mountains in New York are the main

topographic features within the watershed. Elevation

ranges from 30m above sea level to 1340m above sea

level. This area is of particular interest for climate

change impacts modeling because of the nutrient load-

ing, primarily from agricultural runoff, that has caused

intense blooms of cyanobacteria for many decades and

has become more prominent in the last 20 years (Facey

et al. 2012; Isles et al. 2015).

b. Climate data

The weather estimator has the flexibility to be applied

across a variety of regions and driven by a range of

predictor and analog datasets; we describe here the data

FIG. 1. The study area (outlined in red), covering parts of the states of Vermont and New

York and a portion of southernCanada.Water bodies are in blue. Lake Champlain is located in

the center of the study area.
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used for the application to the Lake Champlain basin.

For the predictor dataset, we first downloaded bias-

correction constructed analogs 1/88 GCM temperature

and precipitation data (Brekke et al. 2013) from the

CMIP5 (Taylor et al. 2012) repository. We selected

four GCM ensemble members (MIROC-ESM-CHEM,

MRI-CGCM3, NorESM1-M, and IPSL-CM5A-MR)

forced with representative concentration pathway 8.5

(Moss et al. 2010) with the objective of producing a

bounding set of potential outcomes. Second, because of

the complex topography of the Lake Champlain region,

we used the elevation adjustment approach of Winter

et al. (2016) to further downscale the data to 30 arc s

(1/1208, or ;800m). This resulted in a dataset of daily

precipitation and temperature spanning from 1950 to

2099 that is hereinafter referred to as bias corrected,

downscaled, and elevation-adjusted (BCDE). We note

that choosing more physically relevant predictors would

likely increase the accuracy of our analogs. However, in

this manuscript we focus instead on how well key

impacts-relevant variables can be predicted with the

common constraint of having only temperature and

precipitation as predictors.

For the analog dataset, we selected the North American

Regional Reanalysis (NARR; Mesinger et al. 2006)

because of its range of years available (1979–2014),

coherence across space, time and weather variables,

availability of precipitation (a variable that is not typ-

ically assimilated), and adequate spatial resolution

(;32 km) for our downstream impacts models. NARR

is a reanalysis product that combines the National

Centers for Environmental Prediction Eta atmospheric

model and Regional DataAssimilation System to produce

a dynamically consistent atmospheric and land surface

hydrology dataset for North America (Mesinger et al.

2006). We used NARR monolevel daily means as the

pool of potential analogs for the weather estimator.

The set of surface and near-surface variables in the

NARR monolevel dataset (NOAA/OAR/ESRL PSD

2019) include a large number of common weather

variables needed for climate impacts modeling. This

study focuses on temperature (air.2m), precipitation

(apcp), atmospheric pressure (prmsl), relative humid-

ity (rhum.2m), cloud cover (tcdc), evaporation (evap),

shortwave radiation flux (dswrf), and U- and V-wind

speeds (uwnd.10m and vwnd.10m) because these

weather variables are commonly required inputs for

climate impacts models. The weather estimator could

be used to estimate any weather variable in the NARR

dataset with the caveat that the accuracy of the esti-

mation will be limited by NARR’s ability to capture

that weather variable and the weather variable’s cor-

relation with the predictors.

While this study used GCM-based data with a

resolution of 30 arc s for the predictor dataset and 32-km

reanalysis data for the analog dataset because of their

availability, a predictor dataset at any resolution finer

than or near the resolution of the analog dataset is suf-

ficient for the weather estimator. The difference in res-

olution is managed through the use of a set of tie points

(described in the method below) to compare tempera-

ture and precipitation between the predictor and analog

datasets and find the nearest analog.

c. Method

The main purpose of the weather estimator is to find

the analog in the predictand dataset (NARR) that is

most like each data point in the predictor (BCDE)

dataset. Theweather estimator accomplishes this through

the following main steps as illustrated in Fig. 2 and ex-

plained in detail below: 1) preprocess BCDE and NARR

datasets; then, for each BCDE data point, 2) select a

sample of temperature and precipitation grid cells, the tie

points, fromBCDEalong with the corresponding NARR

grid cells for all days within a temporal window, 3) stan-

dardize the temperature and precipitation values selected

in step 2, 4) rank potential analogs by calculating the

pairwise distances between the standardized BCDE and

NARR temperature and precipitation values, and 5) se-

lect the nearest NARR analog. The R package can be

used to generate a time series of weather variables at single

location or a gridded product over a two-dimensional

study area. The more sophisticated two-dimensional case

is used for the discussion below.

1) PREPROCESSING

Before selecting the analog, there are several

preprocessing steps. First, we average the dailymaximum

and minimum temperatures from BCDE simulations to

estimate the daily average temperature, which is the

temperature variable present in the NARR dataset.

Second, we detrend BCDE temperatures to prevent

poor temperature matches to the pool of potential an-

alogs because of future increases in projected tempera-

tures. Increasing temperatures, as high as 98C by the end

of the century (Fig. 3), lead to daily average tempera-

tures that are rare or nonexistent in the historical record.

The temperature detrending adjustment is of the form

T
BCDEdetrend

5T
BCDE

2 (slope
DT

3 y2 intercept
DT
)S(m) and

(1)

S(m)5 0:25f12 cos[2p(m2 1)/12]g , (2)

where y (i.e., 2015) and m (i.e., 1–12) are the year and

month of the date being detrended and slopeDT and
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interceptDT are the slope and y intercept of the tem-

perature trend line determined by the linear best fit

[standard error (std err)5 0.2585, correlation coefficient

squared R2 5 0.9791, significance level p, 0.001] of the

mean annual temperature increase (Fig. 3) from the

historical mean annual temperature (1979–2014) across

the BCDE simulations used in this study. The S(m)

scaling function is used to dampen the detrending in the

cooler winter months when the projected future tem-

perature increases are more severe. The 0.25 multiplier

in the scaling function bounds S(m) between 0 (winter)

and 0.5 (summer) and was derived empirically by com-

paring the BCDE monthly temperature averages for

2090–99 to the NARR historical period (1979–2014).

Detrending is applied starting in 2015 because this is the

boundary between the historical NARR reanalysis data

and projectedBCDE simulations. The constants in these

equations are specific to the GCMmodels, analysis time

period, and study area used in a specific application and

should be determined on a case-by-case basis.

The detrended temperature is only used to select the

NARR analogs. The final estimated weather dataset

consists of the projected temperature and precipitation

from BCDE and all other weather variables from the

NARR analogs, preserving the projected temperature

and precipitation trends from the GCM. The necessity

of detrending temperature to find a suitable analog will

impose some stationarity on predicted variables. Spe-

cifically, any trend in a predicted variable correlated

with a temperature trend will be neglected. While this

is a compromise, it both ensures a large pool of potential

analogs and retains the seasonality of predicted vari-

ables. For some predicted variables, we expect the im-

plications of this decision to be low given the relatively

small or uncertain projected changes (e.g., wind speed,

relative humidity) while other predicated variables will

likely be impacted to a more significant degree (e.g.,

evaporation). Therefore, temperature detrending should

be applied with caution.

Third, we transform precipitation by taking the

quadratic root of both BCDE and NARR precipitation

values:

P
trans

5
ffiffiffiffi
P

4
p

, (3)

where Ptrans is the transformed precipitation and P is

the original precipitation. Using the raw precipitation

values introduces a negative precipitation bias in the

selection of the historical analog because of 1) the sub-

stantial right skew of the P distribution and 2) the se-

lection of the nearest analog based onEuclidean distance.

Because of these two conditions, for any given BCDE

daily precipitation value, the nearest analog NARR

precipitation value has a higher probability of being to

FIG. 2. Weather estimator flowchart.

FIG. 3. Annual means and trends over 2015–99 for temperature and precipitation. Changes are relative to a 1979–2014 baseline, and 90%

confidence intervals are given (dot–dashed lines).
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the left (less precipitation) on the distribution than to

the right (more precipitation). This tendency leads to a

dry bias. Other root transforms could be used to reduce

the skewness to varying degrees (Tukey 1977; Jeong

et al. 2012), but we found that the quadratic root was

the most effective at reducing dry bias.

The last step in preprocessing is the calculation of

the long-term averaged monthly means and standard

deviations for temperature and precipitation over the

entire NARR dataset. These values are used to stan-

dardize temperature and precipitation from the NARR

dataset as well as the precipitation and detrended tem-

perature from the BCDE dataset before the Euclidean

distance metric is applied. The values of temperature in

degrees Celsius are typically higher than the values of

precipitation in millimeters per day. This results in a

disproportionately large influence of temperature on the

Euclidean distance metric used to find the nearest his-

torical NARR analog. Calculating the Euclidean dis-

tance using values standardized by themean and standard

deviation eliminates this bias, equally weighting temper-

ature and precipitation for the distance metric [see Eqs.

(4)–(6)]. Other approaches, such as quantile mapping,

may provide alternative methods for addressing increas-

ing temperatures, skew in the precipitation data, and

mismatched ranges of values for temperature and pre-

cipitation. However, these alternatives would need to be

evaluated to identify any potential limitations or errors

introduced by the approach.

2) SELECTING THE ANALOG

Once the preprocessing is complete, there are four

primary steps to selecting an analog for each day. First, a

random sample of temperature and precipitation grid

cells fromBCDE, and the geographically corresponding

NARR grid cells, are selected (hereafter referred to as

tie points). To ensure that tie points are not spatially

clustered, a coarser grid is superimposed on the BCDE

grid and a single tie point is selected from within each of

the superimposed grid cells. For this study, we divided

the study area in Fig. 1 (red box) into a coarse 2 3 3 tie

point grid and, from each grid cell of that 2 3 3 grid,

randomly selected a single tie point from the BCDE

grid. This choice of 6 tie points is based on our sensitivity

analysis described in the results section. The use of 6 tie

points serves to balance using fewer points to improve

computational efficiency with using more points to

ensure a good overall match between the BCDE pre-

dictor grid and the chosen analog. The tie points can be

randomly selected on a daily basis, as in this study, or

selected once for the entire estimation time period. In

addition, the tie points could be deterministically se-

lected if there is a priori knowledge available to instruct

tie point selection such as specific locations of interest

for the associated impact studies.

Second, temperature and precipitation values are

standardized for each tie point for both the target date of

the BCDE simulation and all potential historical NARR

analogs (TNARRz
and PNARRz

). As described above, the

standardization parameters used for each target date are

those calculated for the month m of the target date

during preprocessing and are based on the entire NARR

dataset:

T
NARRz

(m)5 [T2T
NARR

(m)]=s
TNARR

(m) and (4)

P
NARRz

(m)5 [P
trans

2P
NARR

(m)]=s
PNARR

(m) . (5)

Third, the standardized temperature and precipitation

are used to calculate the distances between the BCDE

target date and each potential NARR historical analog

over the set of tie points. Only historical analogs within a

user-defined window around the calendar day of the

BCDE target date are considered. This places a seasonal

constraint on analog selection so that, for instance, the

selection of an autumn analog for a spring target date

can be avoided. We use a window size of 61 days

(630days from the target date) for our analysis based on

the results of the sensitivity analysis described in the

results section. Weighted Euclidean distance between T

and P of the tie point grid cells is used as the distance

metric:

d5

8<
: �

Ntiepoints

i51

[w
T

T
BCDEdetrendzi

2T
NARRzi

� �2

1w
P

P
BCDEzi

2P
NARRzi

� �2

]

9=
;

1/2

, (6)

where i is the index over the standardized tie points and

wT and wP are the user-defined relative weights for

temperature and precipitation. We set wT and wP to 1.0

for this study, but there could be climate impacts as-

sessment applications where it is more important to

capture weather variables more consistent with either

temperature or precipitation.

Fourth, we select the potential analog that has

the minimum distance, as defined by Eq. (6), from the

BCDE target data point as the nearer analog. Then, the

full set of weather variables across the entire study re-

gion from the selected historical NARR analog is ap-

plied to the date being estimated with the exception of

temperature and precipitation. Temperature and pre-

cipitation are copied from the original BCDE data to
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guarantee that the projected climate trends in temper-

ature and precipitation from theGCMaremaintained in

the output time series of weather variables.

3. Results and discussion

We performed four analyses to assess the performance

of the weather estimator. First, the relationships between

temperature and precipitation and the estimated weather

variables over NARR (1979–2014) are explored. Second,

the sensitivity of the algorithm to different tie points and

time windows is tested. The parameter values used in

these analyses are shown in Table 1. Third, a historical

cross validation was performed to access the ability of the

weather estimator to recreate a known historical climate

distribution; and finally, the historical climate estimated

by the analog-based weather estimator was compared to

a more traditional climate estimation method, multiple

linear regression.

a. Relationships between estimated weather variables
and temperature and precipitation

The relationships between the estimated weather

variables and temperature and precipitation have sub-

stantial implications for the accuracy of the weather

estimator. To elucidate these relationships, we compared

the distributions of each estimated weather variable

across temperature andprecipitation concurrently using a

partial distribution matrix built with a 7 temperature bins

and 10 precipitation bins (Figs. 4 and 5). Each matrix

element is a histogram of the estimated weather variable

data sampled 15days before and after a target date over

NARR (1979–2014) within the intersection of each

temperature and precipitation bin. This analysis uses a

smaller analysis window (615 days) than the weather

estimator itself (630 days) to ensure stationarity. Only

rows containing more than 3500 data points across the

entire row are shown for brevity. For comparison, each

partial distribution matrix contains over 100 000 data

points for any given date615 days. To ensure that each

histogram contains the same number of data points,

the precipitation and temperature ranges were divided

into 10 quantiles, calculated with the NARR data over

the entire study region, with the exception that the first

precipitation bin includes the lower 40% of all pre-

cipitation values, the largest possible set of the first

10% quantiles that contain zero precipitation days.

Changes in the histograms between adjacent elements

in the matrix show that there is some relationship be-

tween the estimated weather variable and temperature,

precipitation, or temperature and precipitation. Specif-

ically, changes in the histogram matrix along columns,

rows, and diagonally demonstrate an influence of pre-

cipitation, temperature, and temperature and precipi-

tation combined on the estimated weather variable in

the matrix, respectively. The larger the difference be-

tween adjacent histograms, the stronger the relationship

between the estimated weather variable and tempera-

ture and precipitation.

Relative humidity histograms shift to the right and

narrow as precipitation increases across all temperature

bins (Fig. 4). In addition, there is a more dramatic shift

to the right as temperature decreases across most pre-

cipitation bins. These changes in the relative humidity

distribution show that relative humidity is closely tied to

both temperature and precipitation. Most relationships

between the estimated weather variables and tempera-

ture and precipitation are much more nuanced. For in-

stance, atmospheric pressure histograms shift to the left

between the first (little to no precipitation) and second

(more significant precipitation) precipitation columns,

but then are relatively similar when comparing across

the remaining precipitation bins. This reflects the gen-

eral expectation that low pressure is associated with

rainy weather while high pressure is associated with

drier weather.

The partial distribution matrices for the estimated

weather variable V wind for two different seasons,

winter (1 February) and summer (1 August), demon-

strate that the relationships between temperature and

precipitation and the estimated weather variables can

change by season (Fig. 5). In the summer (lower matrix),

the V-wind distributions shift left as the temperature

cools indicating a shift from light southerly winds to

stronger northerly winds. The distributions also flatten

as the temperature cools. These effects appear to lessen

as precipitation increases. This left shift and flattening of

the histograms is less prominent in the winter (upper

matrix). This indicates that the relationships between

TABLE 1. Parameter values for the study region: The Lake

Champlain basin.

Parameter description Parameter Value

Annual detrending slope

[Eq. (1)]

slopeDT 0.0718 8C yr21

6 0.001 std err

Annual detrending

intercept [Eq. (1)]

interceptDT 144.18C
6 2.351 std err

Detrending start year — 2015

Precipitation distribution

transformation

— (P)1/4

No. of tie points — 6

Sampling time window — 630 days

Distance function

precipitation weights

[Eq. (6)]

wP 1

Distance function

temperature weights

[Eq. (6)]

wP 1
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temperature and precipitation and V wind are stronger

in the summer months than in the winter months.

To quantify the relationships between the estimated

weather variables and temperature and precipitation,

the differences in the histograms across temperature and

precipitation bins were calculated using the Perkins skill

score (Perkins et al. 2007), or Sscore. The Sscore is an in-

tuitive measure of the overlap between two histograms,

with a Sscore close to zero denoting a poor match (non-

overlapping histograms) and a Sscore of near one

denoting a near perfect match (overlapping histograms).

This measure is uniquely suited for assessing daily

temperature and precipitation data and is a more rig-

orous standard than assessing statistical moments such

as mean and variance. We calculated the Sscore between

all 7 3 10 matrix element pairs where both histograms

containedmore than 500 data points to avoid biasing the

Sscore toward outliers. We then grouped each pair by the

distance between the elements using the Chebyshev

metric (Deza and Deza 2009), where a one-bin shift in

FIG. 4. Matrix of (top) relative humidity and (bottom) atmospheric pressure partial distributions divided across temperature and

precipitation bins for 1 Aug. The outside horizontal and vertical axes show precipitation and temperature bins, respectively, and each

matrix element contains the histogram for a pairwise combination of temperature and precipitation bins.
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any direction (temperature, precipitation or tempera-

ture and precipitation together) counted as a distance

of 1. Last, the average Sscore was calculated across each

distance for each of the estimated weather variables

(Fig. 6).

Perkins et al. (2007) tested the sensitivity of the Sscore by

randomly sampling 75%of a full probability distribution to

generate 100 partial probability distributions. The lowest

partial probability distribution Sscore found was 0.97;

therefore, Perkins et al. (2007) used this threshold

(i.e., Sscore . 0.97) to define two indistinguishable

probability distributions. Consistent with the anal-

ysis and discussion in Perkins et al. (2007), we set

substantially lower thresholds to indicate significant

(,0.8) and very significant (,0.6) differences be-

tween histograms. A drop in Sscore with increasing

element distance indicates a relationship between

the value of the estimated weather variable and the

values of temperature, precipitation, or both.

The Sscore drops below the 0.8 threshold within a dis-

tance of one or two elements and nears or falls below the

0.6 threshold within a four-cell distance for five of the

FIG. 5. Similar to Fig. 4, but for the matrix ofV-wind partial distributions divided across temperature and precipitation bins for (top) 1 Feb

and (bottom) 1 Aug. Positive values describe southerly winds.
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seven estimated weather variables. In addition, for all

estimated weather variables, the Sscore drops consis-

tently as element distance increases up through a

distance of 6, the maximum distance across a single

temperature row. This shows there is some predictive

power of temperature and precipitation for all estimated

weather variables. Based on these results, the weather

estimator is expected to produce the best daily values for

evaporation, relative humidity, and cloud cover. Con-

versely, temperature and precipitation had the least

predictive power for pressure even though we expected a

strong correlation between changes in temperature and

precipitation and pressure because of the link between

pressure, convergence, and precipitation. The results of

this analysis should be considered specific to this region

and might not be applicable to different geographies.

Hence, relationships between the estimated weather

variables and temperature and precipitation should be

examined before applying this weather estimator to

other study regions.

b. Sensitivity analysis

Each parameter listed in Table 1 influences which

historical analog is selected by the weather estimator.

This sensitivity analysis evaluates the effect of two of

those parameters, the number of tie points and the

size of the time window, by comparing the differences

between the target temperature and precipitation from

BCDE and the selected analog temperature and pre-

cipitation from NARR. Table 2 lists the six scenarios

used to examine sensitivity across 4, 6, 12, and 20 tie

points and time windows of 615, 630, and 645days.

The number of tie points chosen balances a robust rep-

resentation of the domain to maintain the significance of

temperature and precipitation matches between BCDE

and NARR (more tie points) with computational effi-

ciency (fewer tie points). Varying time windows ex-

plores the trade-off between a small time window

(615days), which could result in too few potential ana-

logs to ensure a good match, and a large time window

(645days), which could result in the selection of an an-

alog that is seasonally inconsistent with the target date.

Ten randomly seeded simulations were performed for

each of the six scenarios across the four BCDEensemble

members (1979–2014). Both the mean and the standard

deviation of the temperature and precipitation biases

reduce more slowly after about six tie points, making six

tie points a good compromise between reducing the

biases and computation time (Fig. 7). A similar conclu-

sion can be drawn for a window size of 630days. The

reasonable standard deviation of the temperature and

precipitation biases across different values of these pa-

rameters show that the weather estimator is robust to

the suboptimal selection of these parameters.

FIG. 6. Pairwise Perkins Sscore as a function of cell distance. Std err bars represent the var-

iability across the pairwise comparisons for each distance. Scores , 0.8 are considered to be

significant differences, and scores , 0.6 are very significant differences. Horizontal lines at

those significance levels are plotted for reference. The Perkins Sscore at cell distance 0 would be

1.0 because the histograms being compared would be identical.
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c. Historical cross validation

The ability of the weather estimator to recreate known

historical climate distributions was assessed using a his-

torical cross-validation experiment. The NARR dataset

(1979–2014) was chosen for this cross validation because

the historical values of the predictands are available for

comparison. The historical estimated weather variable

time series was generated one year at a time, removing

the year being estimated from the set of potential analog

matches so that a date could not be estimated by itself.

For example, to estimate the historical series for 1982, the

set of NARR observations from 1979 to 1981 and from

1983 to 2014 were compared with each day of 1982 to

generate the historical estimate for the year 1982. After

creating this historical estimate for each year, the yearly

historical estimates were concatenated to build the full

historical estimate from 1979 to 2014. Four tie points,

randomly selected each day using a 2 3 2 tie point grid

superimposed over the NARR grid, were used to com-

pare the predictor grids to the potential analog matches

and a 630-day window was used to constrain the poten-

tial matches; both consistent with the results of the sen-

sitivity analysis. A smaller tie point grid was used here

because of the smaller size of the NARR grid relative to

the BCDE grid.

The weather estimator recreates the historical distri-

butions of all of the predictands to a very high degree

with a Perkins Sscore consistently above the 0.8 threshold

TABLE 2. Scenarios for the sensitivity analysis.

Scenario No. of tie points Time window (6days)

1 4 615

2 6 615

3 12 615

4 12 630

5 12 645

6 20 615

FIG. 7. The mean (solid line) and standard deviation (dotted line) of the cell-by-cell (left)

temperature and (right) precipitation absolute bias resulting from the sensitivity analysis for

the (top) number of tie points and (bottom) window size. Vertical lines indicate the parameters

selected for this study (tie points 5 6 and window size 5 630 days).
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(see previous discussion) when compared year-by-year

against the historical NARR distributions (Fig. 8).

These results support our initial analysis of the historical

relationships between temperature and precipitation

and the predictands and shows that temperature and

precipitation do have some predictive power for the

predictands.

d. Comparison with MLR

A similar historical cross-validation experiment using

a multiple linear regression (MLR; Jeong et al. 2012)

estimator was performed to compare our weather esti-

mator to more established methods. Each year of his-

torical estimates of the predictands was constructed by

fitting a linear regression between the predictors (tem-

perature and precipitation) and each predictand for

each month using the other years in the NARR dataset,

deriving monthly linear coefficient (b parameter) vec-

tors. For example, to estimate the historical predictand

series for 1982, the set of NARR observations from 1979

to 1981 and from 1983 to 2014 were divided into

12 different datasets by month and used to generate

12 different b parameter vectors. These monthly

b parameter vectors were then used along with the

temperature and precipitation for each day of 1982 to

generate the historical estimate for the year 1982. After

creating this historical estimate for each year, the

yearly historical estimates were concatenated to build

the full historical estimate from 1979 to 2014. The

quadratic root of precipitation was used in the pre-

dictor dataset to match the preprocessing method of

our weather estimator as well as the method of Jeong

et al. (2012), who used the third root of precipitation

as a predictor. These root transforms reduce the skew

of the precipitation distribution, making it more nor-

mal (Tukey 1977), and thus, improving the ability of

the multiple linear regression to use precipitation as a

predictor.

FIG. 8. Historical cross validation of the analog-based weather estimator and, for comparison, a multiple linear regression estimator

over the NARR dataset (1979–2014). The year-by-year Perkins Sscore calculated across 30 histogram bins for the analog-based estimator

distributions in comparison with the historic NARR distributions is shown by the solid line, and the Perkins Sscore for the multiple linear

regression estimator distributions is shown by the dotted line. The Perkins Sscore for temperature and precipitation for the multiple linear

regression estimator is 1.0 for all years because those predictor values are taken directly from the historic NARR dataset and, thus, the

distributions are an exact match.
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The year-by-year distributions of the predictands

from the multiple linear regression estimator are less

similar to the observed NARR data than those of our

analog-based weather estimator as measured by the

Perkins Sscore, especially the two wind variables (Fig. 8).

However, the linear regression estimator does come

close to the performance of our analog weather esti-

mator for relative humidity, evaporation, and shortwave

radiation.While themultiple linear regressionmethod is

computationally much faster than our analog-based

method, especially after the one-time calculation of

the b parameter vectors, it cannot recreate the yearly

distributions for the predictands to the same degree as

our analog weather estimator.

4. Conclusions

Climate data at fine spatial and temporal resolutions

have become essential for socioecological research and

applications in land management, conservation policy,

and planning. GCM products have the advantage of

filtering out some of the unpredictable noise associated

with weather events and local-scale features because

of their low-resolution spatial and temporal scales, but

they are too coarse and do not provide a comprehensive

set of weather variables to meet the needs of socio-

ecological studies (Hansen et al. 2006; Ingram et al.

2002). This was the motivation for the development of

the weather estimator.

Our weather estimator has several strengths. It can

produce a full suite of weather variables at a relatively

high spatial resolution, has low data requirements, is

computationally efficient, and provides weather data

that are consistent across space and variables. The WG

can determine appropriate historical analogs consistent

with the future climate simulated by GCMs, can con-

struct a large number of nonidentical simulated series

using daily, randomly selected tie points that are useful

for uncertainty analysis (Beck 1987), and is generalizable

to a new study region assuming that a high-quality re-

analysis dataset (e.g., NARR, Daymet, North American

Land Data Assimilation System) is available for the

region. In addition, the analysis of the relationships

between the estimated weather variables and tempera-

ture and precipitation show that temperature and pre-

cipitation do indeed have some predictive power for a

wide range of other weather variables and can be used to

find reasonable historical analogs for future projections.

The sensitivity analysis shows that the weather estimator

is robust to reasonable deviations from the optimal tie

point and time window parameters and the historical

cross validation demonstrates that the weather estimator

can recreate historical yearly distributions of the

predictands well and outperforms a multiple linear re-

gression model on the same task. Last, the WG has al-

ready been used to generate weather variables for the

lake hydrodynamic and water quality modeling compo-

nent of an integrated assessment model (Zia et al. 2016)

and is readily available in the ‘‘weatherAnalogs’’ R pack-

age (https://www.r-project.org; accessed 12 August 2017),

making it a valuable contribution and community resource

for the ongoing study of climate impacts.

The weather estimator also has limitations. First and

foremost, the accuracy of the weather estimator is

constrained by the correlation between the estimated

weather variable and temperature and precipitation. In

addition, any limitations of the input data will be re-

flected in the estimated variables. For example, GCM

projections have difficulty simulating short-term extreme

events. Thus, estimated weather derived from GCM

projections will also not have these extreme events. Sec-

ond, the size and diversity of the pool of potential analogs

affects the ability of the weather estimator to find analogs

that closely match the target temperature and precipita-

tion. Therefore, the weather estimator requires a suf-

ficiently large analog dataset to successfully find suitable

analog matches.

The weather estimator can create a complete daily

gridded climate dataset consisting ofweather variables such

as humidity, cloud cover, wind speed and direction, and

solar radiation using the temperature and precipitation

projections of a GCM and an analog dataset. For impacts

assessments that rely on the spatial and temporal structure

of weather variables, the weather estimator is a practical

and robust tool to explore the effects of climate scenarios.
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