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Early Years

July 1969: Martin & Alan travel to Barbados
(BOMEX), and Anaco, Venezuela (VIMHEX-69),
and Miami (visit Joanne and Bob Simpson)

Sept 1970: Alan leaves for post-doc at CSU (a week
after PhD defense!)

1972: Alan is field meteorologist for VIMHEX-72

1974: Alan is Convection Subprogramme and
Airborne Mission Scientist for GATE

1975: Mitch visits CSU
1976: Martin visits CSU
1978: Alan builds house In Vermont

1983: Alan visits ECMWE, presents idea of
convective adjustment to ECMWEF workshop

1986: Betts-Miller scheme published in QJ
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Cloud transports and diabatic forcing are
central to the climate system on all scales

* BL clouds: surface coupling & vertical motion
- sensitivity to T, RH, aerosols, subsidence; and over

land, diurnal cycle, water availability, CO,

- SWCF & LWCEF: surface & TOA
* Deep clouds: forced by larger scales with tight

coupling between precipitation, diabatic heating
and vertical motion — known in 1969

* Deep clouds: cloud radiative forcing of same order as

diabatic heating by WV phase change

Cloud sensitivity to changing aerosols; vertical
circulations and RH, increasing temperature and CO,
- for climate change issues



Flew to Barbados on a VC10
(My first flight)




NOAA DC-6: BOMEX flights
from Barbados in 1969




Martin: Anaco, Venezuela, 1969




Cloud
Research
on a golf-

course

Anaco-1969




Betts filmed a lot of clouds!




| returned from
Venezuela and wrote my
1970 PhD thesis

“Cumulus Convection”

— inspired by this cloud

& the realization that even
the ‘expert’ Herbert Riehl
could not forecast daily R

Cumulus convection over Anace, Venezuela at 1600 hrs (local
trop i Cal CO nvecti On ! time) on 17th August 1963. The cloud dominating the picture has
nearly reached its maximum height, and later completely evaporates.
Cloud base is at 855mb (1250m above the ground), and cloud top is at
650mb (3600m),



Shallow Cumulus Transports
Liguid water potential temperature
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Figure 2. Sketch of the ‘ enthalpy ’ transport pC, W' 8L’ for a field of non-precipitating clouds; the thermal
stratification; the parameterization of the modification of the mean atmosphere by the convection in terms of
the vertical motion of the air between the clouds; and the local temperature change induced by the convection,



Tracking pibals with a theodolite
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Great computer support: PDP-8S

 Paper tape input

e Took 6+ hrs (all
night) to process 8
soundings

e Rawdatatop, T, q,
u, v, 6, 0.




Elegant Cb budget model but very
primitive hand drawn analyses
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F1c. 1. Cumulonimbus model used for budget computations.
Radius of 1, 2 boundary is twice that of echo, "

(x,y) scaled to echo size (!)

Convergence and divergence into cylinder
around radar echo for growth and decay
phases and in 5K 8¢ ranges

[Betts, JAS 1973]




Mesoscale Cumulonimbus budget:
Confirmed mass transport model
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[Betts, JAS 1973]



Martin renting a Plymouth Fury-III to visit Bob &

Joanne Simpson in Miami (1969)
—a UK grad student with no credit card

Plymaulﬁ e




VIMHEX-1972: Carrizal
Improved S-band radar_
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e Tracked storms on
radar

 Launched
precalibrated
rawinsondes every
90mins

Betts, Grover & Moncrieff,
QJRMS 1976

Betts, JAS 1976
Miller and Betts, MWR 1977



Squall-line approaching
VIMHEX-1972




Herbert Riehl arriving at field site
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Calibrated humidity by timing when
sonde entered cloud-base

RADIOSONDE TRAJECTORY
RELATIVE TO CLOUD
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Fic. 2. Suggested circulation relative to a cloud in the sub-
cloud layer indicating how an ascendmg radiosonde can
enter rising moister air in the upper part of the sub-cloud

layer. Betts et al.
BAMS 1974



Mean of 14 ascents through cloud-base
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Fic. 1. Mean profile for 14 radiosonde ascents through cloud-base of potential temperature (9), mixing ratio (r), lifting
condensation level (LCL), relative humidity (RH), perturbation vertical velocity (w).

Bulletin American Meteorological Society 11



Numerical simulation

of Venezuela squall-line
#47

o 3-D trajectory analysis of
cell and system
downdrafts

e On 30x30x9 grid

[Moncrieff & Miller 1976
Miller and Betts 1977]

M. J. MILLER AND A. K. BETTS
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GATE-1974
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GATE political objective: US-USSR collaboration
Scientific objective: address cumulus
parameterization problem

SIMPLIFIED LARGE-SCALE: CONVECTIVE INTERACTION
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GATE day 245, Sept 2, 1974
Oceanographer radar

1415 UTC 1500 UTC
SE Ship position of inner array; range 100km

Note SW-NE bands & fast evolution



Reality -

GATE ‘cloud cluster’

lifecycle on day 245 in 1974

line mation

Bands oriented along the
low level shear, with
inflows from SW,
developing anvil
outflow to the rear
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I mulled over this for 8-10 years

e In 1978 | built a passive solar, wood-heated, PV-powered post
& beam house in Vermont (no phone, no internet) and thought
about atmospheric convection

* Betts, A. K., 1982: Saturation Point Analysis of Moist
Convective Overturning. J. Atmos. Sci., 39, 1484-1505

e Betts, A. K., 1983: Atmospheric convective structure and a
convection scheme based on saturation point methods.
ECMWF Workshop on “Convection in large-scale
numerical models” 28 Nov.-1 Dec, 1983, Reading U. K.,
pp.69-94.
http://www.ecmwi{.int/publications/library/ecpublications/

pdf/workshop/1983/Convection/betts.pdf

e DETAILED OVERVIEW of concepts and framing of
convective adjustment



http://www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/1983/Convection/betts.pdf
http://www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/1983/Convection/betts.pdf

Concept for Betts-Miller scheme
1983-1986

Calculating transports from the details with so many
coupled processes with so many unknowns and
unresolved scales may drift to unrealistic atmospheric
structure (eg Arakawa & Schubert, 1974)

So adjust with finite timescale to vertical (T,q)
structure, satisfying O conservation, in a way
consistent with observed “quasi-equilibrium”

Unstable to moist adiabat, minimum at freezing level
and subsaturated.

Guarantees quasi-realistic coupling of mass and
energy transports and vertical structure



Reality -

GATE ‘cloud cluster’

lifecycle on day 245 in 1974

line mation

Bands oriented along the
low level shear, with
inflows from SW,
developing anvil
outflow to the rear

[See review in Betts 1997]

ST § il & e TR W =t 5 ol e m
1B T R - TR S waamensy (e LE] 32
364.5 HBRIZENTRL FIELD

| GATE Day 245
200 — 8.5N 22W

oiv

L.E-6 /SEC 245.875

f o - J A
18 ¢ o e ]
400 — I- i L A
Al S S vy a B
- [ A e e e, S
15-."\ ,g.u-’ff'blj-—.._h:‘ o
% v P > T
- 105 S &
600 (L
ITiTH A T
F+|.11,|F! K \.'\ 1
i ARREA ;\-'s \ Y
24 \:t\\-‘:\ "'-:_‘ ’j B Jbi? Te
800 — ARY ¥y 0/ 1o
k.

_|[OCoyama,1987] E
] I L] l I
-60 -40 -20 0 20

Omega (10% hPa s™)

03 low level convergence _ _
12 peak ascent mid-trop. 21UTC mid-tropospheric

convergence peaks at
18 peak at 400mb =
21 peak 600mb converg. 28 107 in decay phase

> low-level convergence
24 descent over ascent ( ) 9
at any time)



Mass transports and precipitation
flux only loosely coupled

 The Key Convective Modes

 Arakawa and Chen [1987].... used canonical
correlation analyses on the GATE Phase I
data [Esbensen and Ooyama 1983] and an

Asian data set [He et al. 1987] to show there
were three principal modes of coupling of

(Q:-Qg) and Q..



 Mode 1 is the principal deep convection mode
assoclated with net precipitation and a single cell of
mean upward vertical motion in the troposphere,
although within that there are moist updrafts and
downdrafts.

* Mode 2 is described by Arakawa and Chen as the
component representing deviations of “large-scale”
condensation and evaporation

Heating over cooling couplet driving circulation
with no net precipitation

* Mode 3... Is a modulation of Mode 1, which increases
the mid-tropospheric O flux, without impact on net
precipitation.

Upward O flux is not uniquely coupled to the
precipitation.

[See review in Betts 1997]



p (mb)
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Many Questions 25 years on!

How well do convective models represent the bulk
properties of cloud systems?

Do they represent the dominant convective modes as
well as the SW and LW cloud forcing?

Can we quantify the coupling of diabatic processes
and evaluate them against observations?

Can we evaluate convective vs stratiform
precipitation, updraft and downdraft mass fluxes, and
their microphysics against observations?



Conceptual challenges

Mass transports and precipitation only loosely coupled -
dependent on cloud structure and microphysics eg.
Precipitation-evaporation couplets can drive
circulations with little net precipitation

Microphysics depends on aerosols — poorly known
on global scale

The diabatic cloud radiative forcing and the latent
heating diabatic forcing are of the same order

Surface forcing is coupled radiatively to clouds & the
large-scale circulation evolves quickly in mesoscale
convective systems

Can we parameterize or must we (partially)
resolve cloud-scale?

Then how do we handle the microphysics!



Process diagrams get more complex!

Top of the Atmosphere Radiation Budget
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Precipitation to SWCF
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Aerosol issues: South America

September 2003 ECMWF Experimental product AOT September 2004 ECMWF Experimental product DOT

B0 St A0 BOM GOMA AN

* Amazonian September ‘fire season’ is variable (Morcrette, 2009)
e [Impacts microphysics/dynamics
e Impacts surface net ecosystem exchange — diffuse penetrates canopies



Is there a way forward?

What can we learn from SCMs and CRMSs
with specified external forcing?

Do they have the freedom to develop these
convective modes

Is the radiative coupling realistic?

How do we parameterize the microphysics and
aerosols? Which partly determine the coupling
of updraft/downdraft mass circulations and
precipitation.

CO, budgets — mass transports?
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* With increasing CCN concentrations (and parameterized drop spectrum), cloud
droplet number, maximum updraft speeds, peak rainfall rates, cloud & ice water
concentrations and cloud top heights all increased.



Final remarks!

e 41 years ago we set off to Venezuela as graduate
student ‘labour’ for Herbert Riehl

* \We have spanned an era in the study of tropical
convection and the development of numerical
forecast models!

e My thanks to Martin and ECMWEF for so many
enjoyable and fruitful years of collaboration
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