Land-surface, boundary layer and cloud-field coupling over the Amazon in ERA-40.

Alan K. Betts Pittsford, Vermont <u>akbetts@aol.com</u> and Pedro Viterbo, ECMWF

ECMWF/ELDAS workshop on Land Surface Assimilation, 8-11 November 2004

Using ERA-40 to understand coupling of processes

- Land-surface processes
- BL processes
- SW and LW fluxes: coupling to clouds
- Coupling to precipitation and dynamics

- Evaluate models; compare with data
- Betts (BAMS,2004, Nov)

Madeira River basin : 42

- Hourly archive: basin mean
- Generate daily means
- [Hydrometeorology of the Amazon in ERA-40, Betts et al. 2005]

Cloud forcing; Cloud albedos

- SWCF:TOA = SW:TOA SW:TOA(clear)
- LWCF:TOA = LW:TOA LW:TOA(clear)
- SWCF:SRF = SW:SRF SW:SRF(clear)
- LWCF:SRF = LW:SRF LW:SRF(clear)

Atmosphere cloud radiative forcing are the differences

- SWCF:ATM = SWCF:TOA SW:SRF
- LWCF:ATM = LWCF:TOA LW:SRF

Define TOA and SRF cloud albedos

ALB:TOA = 1 - SW:TOA/SW:TOA(clear) ALB:SRF = 1 - SW:SRF/SW:SRF(clear)

Soil moisture indices

• 0 < SMI < 1 as PWP<SM<FC

- SMI:L1 -- 0-7cm
- SMI:root -- 0-100cm [L123]

Seasonal Cycle and SMI -1

• T and Q

LCL and θ_{E}

Seasonal Cycle and SMI -2

• TCC, HCC, LCC

SW_{net}, LW_{net}, R_{net}

Seasonal Cycle and TCWV

Note TCC, ALB and TCWV -ratio of ALBs Seasonal cycle of P-E -zero in May/Sept

Seasonal Cycle - 4

Scaled SEB Convergence →TCWV, cloud R_{net} falls, E flat

Coupling of soil moisture to P_{LCL},LCC, LW_{net}

Cloud-base, LCC and LW_{net} tightly linked to soil moisture

Omega, TCWV, and albedo TCWV, albedo and P

• TCWV, ALB driven by omega

P, ALB linked to TCWV

Omega, P, E and TCWV

Linear relationship P with omega

SW and LW cloud forcing

 Tight relation of TOA and SRF SWCF

TOA and ATM LWCF - linked

Albedo, SW and LW coupling SW very tight

• *ALB:SRF* = 1.45**ALB:TOA* + 0.35*(*ALB:TOA*)²

Scaled fluxes, P and omega binned by albedo

- Flat λE , unlike H, LW_{net}
- EF increases with SMI

 ALB is fair measure of omega and P

Scaled fluxes, P and omega binned by Soil moisture

- λE weak max.
- linear H and LW_{net}

- P has θ_{E} dependence as well as SMI

SMI to cloud-base

- LCL falls with SMI
- Precipitation into the sub-cloud layer lowers LCL

Binned by P_{LCL}

• LW_{net} and ALB

P, EF, SMI, ALBs - all decrease with LCL

SW and LW feedback of EF

- Greater EF
- reduces outgoing LW
- increases surface cloud albedo

Conclusions-1

- Models are powerful tool for understanding coupling of processes
- At the land surface, soil moisture, evaporation, precipitation, surface energy budget, LCL and cloud field are tightly coupled
- Omega field, precipitation, TCWV and cloud field are tightly coupled
- Daily mean data sufficient to describe the states and the transition between them

Conclusions-2

- Soil moisture directly impacts P_{LCL}, LCC, LW_{net}
- Surface LW_{net} is tightly controlled by BL depth and cloud albedo (3 W/m²)
- Omega field linked to TCC, ALB, P
- The TOA SW 'cloud albedo' is sufficient to determine surface (<0.5%) and atmospheric cloud forcing on basin scales

Conclusion-3

- How good is the coupling between processes in ERA-40, knowing that the diurnal cycle of precipitation is poor over land in the tropics? *Check Cy 28R1*
- Can we evaluate any of these relationships directly from satellite data or at surface flux sites?
- Can we use these relationships in our data assimilation methodology?