Radiative control on the diurnal temperature range and the nocturnal boundary layer

Alan K. Betts Atmospheric Research, Pittsford, Vermont akbetts@aol.com

> ETH Zurich April 11, 2006

What causes global model climate biases?

 The interaction of the many parameterized processes

- Over land, these include
- sub-surface thermal and hydrologic
- Land-surface and boundary-layer
- Cloud and precipitation
- Shortwave and longwave cloud feedbacks

Can we keep trying plugcompatible sub-routines till some some combination 'works'?

- Unlikely to be satisfactory method since 8 or more components are involved
- Need to understand how the coupled model system works
- Does coupling in model resemble reality?
- Probably not since 'land-surface coupling' differs widely in models (Koster et al., 2004)

Consider the chain of processes involving water

(Yesterday's talk)

SMI : soil moisture index

Consider the diurnal cycle of temperature

(It is an important climate parameter that has been changing)

- What determines the diurnal temperature range (DTR)?
- What determines the strength and depth of the night-time boundary layer (BL)?

• ???

Consider the diurnal cycle of temperature

- What determines the diurnal temperature range (DTR)?
- What determines the strength and depth of the night-time boundary layer (BL)?

Answer:

 In ERA-40 they co-vary with net longwave radiation (LW_{net})

Reference

 Betts, A.K., 2006: Radiative scaling of the nocturnal boundary layer and the diurnal temperature range. J. Geophys. Res., doi:10.1029/2005JD006560 (in press).

Model climate over land

- When does it cool a lot at night and form a very stable BL?
- When it is dry and there are no clouds.

• Then large diurnal temperature range

RH is related to height of LCL

- True over diurnal cycle and for daily mean
- Deep dry pm BL goes with large DTR and large outgoing LW_{net}

ERA40: Surface 'control'

- Madeira river, SW Amazon
- Soil water → LCL, LCC and LW_{net}

- RH gives LCL [largely independent of T]
- Think of RH linked to availability of water

What controls daily mean RH anyway?

- RH is balance of subsidence velocity and surface conductance
- Subsidence is radiatively driven [40 hPa/day]
 + dynamical 'noise'
- Surface conductance

$$G_s = G_a G_{veg} / (G_a + G_{veg})$$

[30 hPa/day for $G_a = 10^{-2}$; $G_{veg} = 5.10^{-3}$ m/s]

When it is dry and there are no clouds: -LW_{net} is large

Boreal forest data

ERA-40 data

• LW_{net} is large when mean RH and cloud cover are low [here given by cloud albedo: α_{cloud}]

Use ERA40 model data for river basins

- Hourly means over river basins
- Mackenzie, Mississippi, Amazon and LaPlata
- Soil, surface and atmospheric column
- Fluxes and state variables

LW_{net} linked to diurnal cycle

- In Amazon dry season
 - larger diurnal cycle and outgoing LW_{net}

Define radiative temperature scale from 24-h mean LW_{net}

- $\Delta T_R = -\lambda_0 LW_{net24}$ where $\lambda_0 = 1/(4\sigma T^3)$ [from slope of Stefan-Boltzmann σT^4]
- $T_{sc} = (T_2 T_{24}) / \Delta T_R$
- Collapses diurnal cycles to one curve

Apply across all river basins

 DTR_{sc} amplitude decreases with increasing latitude

Plot daily DTR against ΔT_R

Amazon

Mackenzie

Define strength of Night-time BL

At dawn (T_{min}) define strength of NBL as $\Delta T_N = T_N - T_{min}$

Relation to diurnal cycle

NBL forms when sensible heat flux H goes negative

Define NBL strength at dawn (scaled) $\Delta T_{Nsc} = T_{Nsc} - T_{minsc}$

Define scaled DTR, ΔT_N

- Diurnal temp range $DTR_{sc} = DTR/\Delta T_{R}$
- Strength of NBL $\Delta T_{Nsc} = \Delta T_N / \Delta T_R$

Scaled amplitudes increase with growth-time of NBL (τ_N)

- In summer northern basins have shorter NBL growth-time and smaller DTR_{sc} and ΔT_{Nsc}
- $\Delta T_{\rm Nsc} / {\rm DTR}_{\rm sc} \approx 0.9$

Define scaled DTR, ΔT_N and H

- Diurnal temp range $DTR_{sc} = DTR/\Delta T_{R}$
- Strength of NBL $\Delta T_{Nsc} = \Delta T_N / \Delta T_R$
- Scaled heat flux $H_{sc} = H_N/(-LW_{net24})$

Binned data and regression [summer daily data: 10700 days]

Regression fit

DTR_{sc}; ΔT_{Nsc} ; H_{sc} as function of τ_N and friction vel. U_{starN}

In ERA-40...

 Scaled diurnal temperature range and NBL strength increase with length of night and decrease weakly with friction velocity

 Scaled night-time heat flux increases with friction vel. and weakly with length of night

Radiative velocity scale gives NBL depth **h**

Gives h \approx 20hPa for **J**_N = 12h

NBL depth: $h = W_R J_N / \beta R$

h increases with friction velocity

R is an 'amplifier' for NBL CO₂ storage

- $\Delta CO_{2N} = \mathbf{R} (\text{Resp}/\mathbf{W}_{R})$ where Resp is respiration rate
- Resp/**W**_R≈ 0.2/0.0048 ≈ 42 ppm CO₂
- Night-time rise is 42R

Conclusions

- LW_{net} depends on RH and cloud cover
- Amplitude of diurnal temperature range depends mostly on LW_{net} and night-length, and decreases a little with wind-speed
- Strength of NBL at dawn is related (90%)
- NBL depth increases steeply with friction velocity (and depends on vertical profile)

Lessons for the future?

• Radiation, clouds, and daily surface climate are a tightly coupled system

 Models can help us understand the coupling of complex processes involving clouds & radiation

 $P_{LCL} \rightarrow \alpha_{cloud} and LW_{net}$

