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ABSTRACT

This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly

near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies.While the cloud–

climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April

climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack.

The summer climate hasmemory of precipitation anomalies back to the beginning of snowmelt inMarch. In the

warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to pre-

cipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The

diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation

anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent po-

tential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation

increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly pre-

cipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations.

Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are

routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of

correlation coefficients, derived from cloud and climate observations, could be used to evaluate the represen-

tation of the land–cloud–atmosphere system in both forecast and climate models.

1. Introduction

The coupling between the energy and water cycles at

the land surface is central to hydrometeorology and

important to weather forecasts on time scales from days

to seasons. On daily time scales, the land–atmosphere

system is fully coupled, so errors in the model repre-

sentation of processes in the soil, vegetation, boundary

layer, and cloud fields can rapidly bias a model forecast.

An earlier review, Betts (2004), looked at hydromete-

orology from the global modeling perspective using

model reanalysis data. These model data showed how

net longwave and shortwave radiation, cloud cover,

surface fluxes, diurnal temperature range, soil moisture,

and cloud-base height were coupled on daily time scales

over river basins.

Historically, the observed climate variables available

to understand land surface–atmosphere coupling were

temperature and precipitation, along with pressure,

wind, relative humidity, and snow depth. Other key

variables such as longwave (LW) and shortwave (SW)

radiation, soil moisture, and soil temperature, and the

surface sensible and latent heat fluxes are only available

at a more limited number of flux sites (Baldocchi 2003;

Xie et al. 2010). Initially, these measurements were

available from summer field experiments, but in the last

decade or so they have become available on a continu-

ous basis, which makes them increasingly valuable for

analyzing cloud–atmosphere–land coupling.

Recent work using the Canadian Prairie data, an

hourly dataset going back 60 years with little missingCorresponding author e-mail: Alan K. Betts, akbetts@aol.com
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data, has given us powerful new observational insights

into hydrometeorology on climate time scales (Betts

et al. 2013a,b, 2014a,b, 2015, 2016; Betts and Tawfik

2016). The primary reason is that, in addition to the

conventional World Meteorological Organization cloud

observations, trained observers recorded hourly the

fraction of the sky in tenths covered by opaque, re-

flective clouds that obscured the sun, moon, or stars. As

daily and daytime means, these opaque cloud observa-

tions can be calibrated to give the LWnet and the SW

cloud forcing, using the baseline surface radiation net-

work (BSRN 2016) station on the Prairies, 25 km south

of Regina in Saskatchewan (Betts et al. 2015). These

opaque cloud observations are thus a surrogate for LW

and SW cloud forcing (LWCF and SWCF), which de-

termine much of the variability in the fully coupled land

surface–cloud system on daily and longer time scales

(Betts et al. 2014a; Betts and Tawfik 2016). It is probably

fair to say that without the cloud forcing of the land

surface, our long-term climate and hydrological analyses

have had critical limitations. Of course, global models

have all the radiation terms, but they are subject to the

uncertainties in the model clouds and their radiative

properties, and this leads to substantial differences be-

tween model climate simulations, especially in climate

sensitivity estimates (Webb et al. 2006, 2013).

Many modeling studies have shown a link between

increased soil moisture anomalies and both cloud and

precipitation (e.g., Betts et al. 1996; Fennessy and

Shukla 1999; Koster and Suarez 2001; Pal and Eltahir

2001; Betts 2004; Ek and Holtslag 2004; Wu et al. 2007;

Kim and Wang 2007; Koster and Manahama 2012;

Ferguson et al. 2012). Some of the listed works found

that relatively dry spring soil moisture conditions re-

sulted in less summer rainfall and warmer temperatures,

while wetter spring soil moisture conditions had either

weak or no effects. Amultimodel assessment of seasonal

and subseasonal predictability was later conducted

during phase 2 of the Global Land–Atmosphere Cou-

pling Experiment (GLACE-2; Koster et al. 2010, 2011).

GLACE-2 found that subseasonal forecasts of 2-m air

temperature could be improved by including more re-

alistic soil moisture initialization. Precipitation forecasts

show much weaker benefits over the contiguous United

States, however. GLACE-2 also pointed out the asym-

metry in dry versus wetter initializations, suggesting that

the northern plains showed improved skill under drier

conditions, while the southwestern United States

showed increased forecast skill when soils were wetter.

A recent observational study (Tuttle and Salvucci 2016)

suggests that this feedback is complex and may change

sign between the western and eastern United States,

which they attributed to regional aridity. The GLACE-2

study over Europe (Van den Hurk et al. 2012) showed

that realistic soil moisture assimilation improved tem-

perature forecast skill up to 6 weeks, but there was little

improvement in precipitation forecast skill.

The Canadian Prairie data show an increase of station

precipitation with the intensification of land use that

resulted from a 20% reduction of the land area that was

left fallow in the growing season (Betts et al. 2013b, 2016),

and some increase with decreasing wind speed and in-

creased equivalent potential temperature in summer

(Betts and Tawfik 2016). However, the regression of

monthly precipitation anomalies on precipitation anom-

alies for preceding months in summer shows no correla-

tion (Betts et al. 2014a). This suggests that the link

between current and lagged monthly precipitation

anomalies, soil moisture anomalies, and evaporation on

monthly time scales may not be simple. One confounding

factor is that the extraction of soil water over the growing

season fromMay to August (MJJA), estimated from the

reduction in total water storage, is a large damping factor

on wet or dry precipitation anomalies (Betts et al. 2014a).

Section 4e of this analysis will show a similar damping in

the correlation coefficients with increasing precipitation

anomalies.

The Prairie dataset is sufficiently large (more than

600 station years) and of sufficient quality that we can

describe the land surface coupling both on the diurnal

time scale (Betts and Tawfik 2016) and on the monthly

time scale (Betts et al. 2014a). This paper is an extension

of Betts et al. (2014a), in which we extract the monthly

mean diurnal cycles following Betts and Tawfik (2016)

rather than approximate them, and then look more deeply

at the coupling between the near-surface thermodynamic

variables and anomalies of opaque cloud and precipitation.

On monthly time scales, we can use multiple linear re-

gressions to extract the correlation coefficients between

anomalies of temperature and humidity (and derived var-

iables) and anomalies of cloud and precipitation for the

current and previous months (see section 2).

In this northern latitude Prairie climate, during the

warm season from May to October snow is rare, and

during the cold season from November to March/April

snow cover is common. The climate transitions with snow

cover are fast and dramatic: temperature drops 10K as a

result of the high albedo of surface snow, a fall in the

downward LW radiation, and a shift to a stable boundary

layer (Betts et al. 2014b; Betts and Tawfik 2016). In sec-

tion 3, we will show how the mean thermodynamic fields

in April have memory of precipitation back through the

entire cold season to November. In section 4, we will

explore many aspects of the coupling in the warm season.

First, we show that during July and August, some hu-

midity variables and the afternoon height of the lifting
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condensation level (LCL) show memory of precipitation

anomalies back to March. This extended memory sug-

gests that improvements in seasonal forecasting may be

possible. Then, we merge the months May–August to

develop a set of correlation coefficients broadly repre-

sentative of the growing season and show the warm

season climate dependence on opaque cloud and

precipitation. We show how the diurnal cycle of mixing

ratio, with two maxima and minima, depends on cloud

and precipitation anomalies. Finally, we show how the

correlation coefficients themselves change with pre-

cipitation anomalies from dry to wet conditions. In

section 5, we look briefly at the inverse problem: how

well opaque cloud cover can be determined from cli-

mate variables. Section 6 presents our conclusions.

2. Data processing and methodology

a. Canadian Prairie dataset

For this paper we analyze six Canadian Prairie sta-

tions in Alberta (Calgary, Lethbridge, Medicine Hat,

Edmonton, Red Deer, and Grande Prairie) and six

stations in Saskatchewan (Estevan, Regina, Moose Jaw,

Swift Current, Saskatoon, and Prince Albert). The pe-

riod of record is 1953–2010; however, some stations had

no precipitation records from 2005 to 2010 (see Betts

et al. 2014a), and most snow-depth data were only

available from 1955 to 2006 (Betts et al. 2014b). Ap-

proximately 620 station years of data were available.

Station identifiers, location, and elevation are given in

Table 1 in Betts and Tawfik (2016), together with a map

showing their location and the land cover. Eleven sta-

tions, with typical station spacing on the order of 150 km,

are in an agricultural region with an east–west domain of

720km and north–south domain of 480km. The twelfth

station, Grande Prairie, is about 350 km to the west-

northwest of Edmonton. There has been some land-use

change over the 58-yr period, as the practice of summer

fallowing has been replaced with continuous cropping in

many regions (Betts et al. 2013b); however, for this

study, wewill merge all years. Themain annual crops are

canola and cereal crops such as wheat and barley, and

some pulse crops such as peas and lentils.

The hourly data were processed as intact monthly

mean diurnal cycles for each station for each year. The

time base is local standard time. The hourly dataset is

remarkably complete. Days were only omitted if ,20h

of data were available. Months were omitted if they had

fewer than 28 days remaining, except for February,

where this threshold was reduced to 25 days.

From themonthly diurnal cycles of temperatureT and

relative humidity (RH) and station pressure PS data, we

computed a set of derived thermodynamic variables,

mixing ratioQ, equivalent potential temperature uE, and

pressure height to the lifting condensation level PLCL.

For each variable Y, we extracted from the monthly

mean diurnal cycles (Betts and Tawfik 2016) the daily

mean Ym, the maximum and minimum (Yx and Yn, re-

spectively), and the times of the maximum and minimum.

We then computed the long-term station monthly mean

and used these to computemonthly anomalies dY. For the

daily precipitation and snow depth, we also computed

monthly means, the long-term stationmonthly means, and

used these to computemonthly anomalies for each station.

We computed a monthly snow cover frequency as the

fraction of days in a month with snow depth.0, and again

calculated anomalies from the long-term station means.

The monthly anomalies of opaque cloud, pre-

cipitation, snow depth, and snow cover frequency were

then standardized by their monthly standard deviation

(SD). For the temperature anomalies dTm, dTx, and dTn

and the diurnal temperature range dDTR, we stan-

dardized by the monthly SD of dTm. Similarly for the

variables dRHm, dRHx, and dRHn and the diurnal RH

range dDRHR, we standardized by the monthly SD of

dRHm. The corresponding set of anomalies for equiva-

lent potential temperature duE and pressure height to

the lifting condensation level dPLCL were standardized

by the monthly SD of duEm, and dPLCLm, respectively.

We first analyzed individual stations, then merged the

Alberta and Saskatchewan station groups and found

similar results. Consequently, we merged all 12 stations

to present the results in this paper. These data are

available from Environment and Climate Change

Canada (http://climate.weather.gc.ca/) or from the

corresponding author.

b. Standardized multiple regression

We used multiple linear regression to explore the

correlation between variables. Following Betts et al.

(2014a), our starting format was to regress a stan-

dardized (denoted s) thermodynamic anomaly dYs on

mean opaque cloud anomalies dOPAQms for the

current month and lagged precipitation anomalies for

the current month dPR0s and preceding months

(dPR1s, dPR2s, dPR3s, . . . , dPR5s) in the form

dY
s
5K1A(dOPAQ

ms
)1B(dPR0

s
)1C(dPR1

s
)

1D(dPR2
s
)1E(dPR3

s
)1⋯1G(dPR5

s
) .

(1)

Multiple regression shows no memory of cloud for pre-

vious months. Since we are using anomalies, the leading

coefficient K is of order zero and will not be shown.
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Total opaque cloudwas observed and recorded in units of

tenths of the sky, which we converted to a fraction (0–1)

of sky cover. Precipitation was recorded in millimeters

per day, and snow depth in centimeters. After stan-

dardization, all variables are dimensionless, but for

graphs, we will often multiply by the SD used for

standardization to recover the dimensional units.

c. Significance of multiple regression coefficients

In the tables reporting the A–G coefficients corre-

sponding to Eq. (1), coefficients with .99% confidence

(p, 0.01 based on a Student’s t test for significance) are

boldface, coefficients with 95%–99% confidence (0.01#

p , 0.05) are roman, coefficients with 90%–95% confi-

dence (0.05 # p , 0.1) are italicized, and coefficients

with ,90% confidence are listed in parentheses. Tables

also show the adjusted coefficient of determination R2

values and the number of months in each analysis. As

the correlation coefficients with lagged precipitation

anomalies decrease going back to earlier months, their

contribution to increasing R2 values become small, even

though the regression coefficients remain significant

because of our large sample size. For the warm season

months MJJA, some humidity variables show memory

of precipitation anomalies back toMarch (see section 4).

For April, the time of snowmelt and ground ice melt,

there is memory of precipitation anomalies going back

for the entire cold season to November (see section 3).

d. Conceptual issues

Multiple regression gives us correlation coefficients

between sets of variables [and an estimate of their root-

mean-square (RMS) uncertainty and a confidence esti-

mate], but since this is a fully coupled system, we cannot

address questions of cause and effect. Our choice of

predicted and predictor variables is based on a concep-

tual model. For example, we shall start with regressing

all the 2-m thermodynamic variables on opaque cloud

and lagged precipitation, looking at the patterns, and

especially for the variables like DTR and RHn that have

tight relationships (large regression R2). Precipitation

comes from clouds, but it is intermittent, as many days

have no precipitation. Our monthly warm season anal-

ysis uses current monthly precipitation and precipitation

for the preceding months, going back until the co-

efficients in Eq. (1) become as small as the estimate of

their RMS, whenR2 values no longer increase. But given

the key role of cloud forcing and the uncertainty in cloud

properties in models, we will ask the inverse question in

section 5: how well are cloud anomalies known, given

climate variable anomalies.

There are known physical constraints on the coupling

of parameters. The radiative forcing by opaque clouds

is a strong driver of the diurnal cycle of T and RH (Betts

et al. 2013a). Relative humidity is a key variable in the

coupled land–atmosphere system. The fall of Tn is lim-

ited if saturation is reached at night. The daily mean

RHm is linked to vegetative resistance to transpiration,

which drops RH from saturation inside the leaf to its

value in the near-surface layer (Betts et al. 2004). Once

the boundary layer (BL) grows through the nighttime

stable inversion a few hours after sunrise, the LCL is

typically tied to cloud-base pressure and to the depth of

the mixed layer (ML). Cloud-base temperature de-

termines the downward longwave radiation from the BL

cloud field, which is a tightly coupled component of the

LWCF. Cloud-base pressure, temperature, and mixing

ratio determine the moist adiabat (i.e., uE) for ascending

parcels, as well as cloud liquid water that feeds the de-

velopment of precipitation. Mixing ratio (i.e.,Q) can be

calculated fromT andRH, so when the regression shows

(see section 4a) that afternoon Q is correlated to pre-

cipitation, rather than to cloud forcing, this imposes a

constraint on T and RH at the afternoon temperature

maximum.

e. Timing of diurnal cycle

Our methodology is based on the climatology of the

monthly mean diurnal cycle from which we extract the

mean, maxima, and minima. This works well for T, RH,

PLCL, and uE, which have a single maxima and minima,

but not forQ, which has two maxima and minima in the

warm season, unless it is very cloudy (Betts et al. 2013a;

Betts and Tawfik 2016). Table 1 shows the mean and

TABLE 1. Mean local times (LST) for diurnal cycle maxima and minima for six stations in Saskatchewan.

Month (count) Tn Tx RHx RHn uEx

April (300) 5.69 6 0.53 15.77 6 0.73 5.59 6 1.08 15.79 6 1.15 15.76 6 0.78

May (301) 5.07 6 0.60 15.82 6 0.85 5.39 6 0.71 15.98 6 1.20 15.67 6 0.97

June (298) 4.71 6 0.55 15.78 6 0.96 4.98 6 0.65 15.90 6 1.21 15.52 6 1.32

July (297) 4.96 6 0.59 15.82 6 0.87 5.10 6 0.69 15.94 6 1.13 15.69 6 1.43

August (299) 5.67 6 0.54 15.78 6 0.73 5.67 6 0.60 16.03 6 0.92 15.22 6 1.23

September (298) 6.40 6 0.68 15.54 6 0.68 6.41 6 0.82 15.72 6 0.96 15.19 6 0.88

October (297) 6.71 6 0.66 15.15 6 0.66 6.78 6 0.94 15.31 6 0.73 14.93 6 0.69

MJJA mean 5.10 6 0.67 15.80 6 0.85 5.28 6 0.71 15.96 6 1.12 15.52 6 1.26
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standard deviation by month for the local times of Tn,

Tx, RHx, RHn, and uEx for a merge of the six stations in

Saskatchewan. The times for Tn and RHx occur near

sunrise, which varies by month, but the times of after-

noon Tx, RHn, and uEx vary little from April to Sep-

tember. The times of afternoonmaximum andminimum

across these variables coincide within the hourly reso-

lution of the raw data and the monthly standard

deviations shown.

For mixing ratio Q, we can easily compute the daily

mean, but given the more complex double mode diurnal

structure, we recomputed values QTn and QTx from the

morning pairs near sunrise Tn, RHx and afternoon pairs

near the maximum temperature Tx, RHn. The full di-

urnal cycle of Q will be shown in section 4d.

3. Memory in April climatology of cold season
precipitation

The reflective snow cover on the Prairies, with an al-

bedo of’0.7, acts as a climate switch that reduces Tm by

108C (Betts et al. 2014b, 2016; Betts and Tawfik 2016).

April is the month when the snowpack finally melts and

the ground thaw occurs on the Prairies. For the April

multiple regression analysis, we standardized all vari-

able groups by the April SD of the mean and used the

monthly SD for precipitation. The results in Table 2

below ‘‘Opaque cloud and precipitation’’ for the 12

stations in Alberta and Saskatchewan show the co-

efficients of the multiple regression of selected stan-

dardized variables on standardized anomalies of opaque

cloud for April and precipitation from April back to

November [A–G in Eq. (1)]. We see that the April

monthly anomalies show memory of the anomalies of

precipitation back 5 months through the entire cold

season to November, when typically the ground begins

to freeze and the first lasting snow occurs (Betts

et al. 2014b).

For the first row, dOPAQm–Aprs, the large negative

coefficients for the anomalies dDTRs, dTxs, and dPLCLxs

mean that these variables fall with increasing opaque

cloud cover, while the positive sign for dRHns and

TABLE 2. Standardized regression coefficients for April anomalies dDTRs , dTxs, dRHns, dRHms , and dPLCLxs on standardized

anomalies of opaque cloud and precipitation, addingMarch snow-depth anomalies, and adding fraction ofApril days with snow cover. For

coefficients, boldface represents p , 0.01 (.99%), roman represents 0.01 # p , 0.05, italic represents 0.05 # p , 0.1, and parentheses

represent p . 0.1.

Variable dDTRs dTxs dRHns dRHms dPLCLxs

Opaque cloud and precipitation

620 months R2 0.67 0.47 0.65 0.63 0.66

dOPAQm–Aprs (A) 20.52 6 0.02 20.78 6 0.04 0.76 6 0.03 0.60 6 0.03 20.93 6 0.04

dPR–Aprs (B) 20.06 6 0.02 (0.01 6 0.04) 0.20 6 0.03 0.17 6 0.03 20.19 6 0.04

dPR–Mars (C) 20.12 6 0.02 20.22 6 0.04 0.23 6 0.03 0.19 6 0.02 20.27 6 0.03

dPR–Febs (D) 20.07 6 0.02 20.12 6 0.04 0.16 6 0.03 0.13 6 0.02 20.19 6 0.03
dPR–Jans (E) 20.09 6 0.02 20.19 6 0.04 0.17 6 0.03 0.13 6 0.02 20.21 6 0.03

dPR–Decs (F) 20.06 6 0.02 (20.06 6 0.04) 0.16 6 0.03 0.14 6 0.02 20.19 6 0.03

dPR–Novs (G) 20.08 6 0.02 20.13 6 0.04 0.07 6 0.03 0.08 6 0.02 20.11 6 0.03

Adding March snow-depth anomalies

552 months R2 0.70 0.46 0.71 0.67 0.71

dOPAQm–Aprs (A) 20.53 6 0.02 20.74 6 0.05 0.77 6 0.03 0.61 6 0.03 20.95 6 0.04

dPR–Aprs (B) 20.06 6 0.02 (20.02 6 0.05) 0.21 6 0.03 0.18 6 0.03 20.21 6 0.04
dPR–Mars (C) 20.09 6 0.02 20.17 6 0.04 0.17 6 0.03 0.14 6 0.03 20.20 6 0.04

dPR–Febs (D) 20.03 6 0.02 (20.04 6 0.04) (0.04 6 0.03) 0.06 6 0.03 20.06 6 0.04

dPR–Jans (E) 20.05 6 0.02 20.09 6 0.04 0.07 6 0.03 0.06 6 0.03 20.09 6 0.04

dPR–Decs (F) 20.04 6 0.02 (20.02 6 0.04) 0.12 6 0.03 0.12 6 0.02 20.15 6 0.03
dPR–Novs (G) 20.05 6 0.02 20.12 6 0.04 (0.01 6 0.03) (0.03 6 0.03) (20.03 6 0.03)

dSnowdepth–Mars (S) 20.13 6 0.02 20.19 6 0.05 0.34 6 0.04 0.24 6 0.03 20.39 6 0.04

Adding fraction of April days with snow cover

550 months R2 0.73 0.65 0.80 0.70 0.78

dOPAQm–Aprs (A) 20.49 6 0.02 20.57 6 0.04 0.65 6 0.03 0.54 6 0.03 20.82 6 0.04

dPR–Aprs (B) 20.04 6 0.02 (0.03 6 0.04) 0.16 6 0.03 0.15 6 0.03 20.15 6 0.04

dPR–Mars (C) 20.08 6 0.02 20.07 6 0.03 0.14 6 0.03 0.14 6 0.03 20.18 6 0.03
dPR–Febs (D) 20.05 6 0.02 (20.02 6 0.03) 0.09 6 0.03 0.10 6 0.03 20.11 6 0.03

dPR–Jans (E) 20.05 6 0.02 (0.01 6 0.03) 0.06 6 0.03 0.07 6 0.03 20.08 6 0.03

dPR–Decs (F) 20.04 6 0.02 (0.00 6 0.03) 0.12 6 0.02 0.13 6 0.02 20.16 6 0.03

dPR–Novs (G) 20.06 6 0.02 20.10 6 0.03 (0.01 6 0.02) (0.04 6 0.02) (20.04 6 0.03)

dSnowcover–Aprs (T) 20.19 6 0.02 20.63 6 0.04 0.52 6 0.03 0.31 6 0.03 20.57 6 0.03
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dRHms means they increase together with opaque cloud.

For dTxs and dDTRs (and dTms, not shown), the nega-

tive coefficients B–G for precipitation for the months

from March back to November mean that the positive

cold season precipitation anomalies are coupled to cold

April temperatures. For dRHns and dRHms (and

dRHxs, not shown), the positive coefficients B–G for

precipitation mean that positive cold season pre-

cipitation anomalies are coupled to higher RH in April.

Most coefficients for dDTRs, dRHns, dRHms, and

dPLCLxs (afternoon maximum of the pressure height of

the LCL, representative of cloud base) have a 99%

confidence (p , 0.01).

There are several physical processes that are probably

involved. The precipitation over the cold season is

mostly stored in the snowpack until spring, when melt

absorbs energy and cools the surface; the melt also

provides water for evaporation, which also cools and

increases RH. In addition the freeze-up of the soil in

November may similarly preserve November pre-

cipitation anomalies as soil ice through the cold season

until spring melt.

We assessed the role of the snowpack storage. The

regression of standardizedMarch snow-depth anomalies

on precipitation anomalies from November to March is

(R2 5 0.38)

dSnowdepth–Mar
s
5 (0:276 0:04)dPR–Mar

s
1 (0:336 0:03)dPR–Feb

s
1 (0:346 0:04)dPR–Jan

s

1 (0:126 0:03)dPR–Dec
s
1 (0:176 0:03)dPR–Nov

s
. (2)

Not surprisingly, we see memory of precipitation

anomalies, which typically fell as snow, back to

November. All coefficients in Eq. (2) have a

confidence .99%.

dY–Apr
s
5A(dOPAQ

m
–Apr

s
)1B(dPR–Apr

s
)1C(dPR–Mar

s
)1D(dPR–Feb

s
)1E(dPR–Jan

s
)

1F(dPR–Dec
s
)1G(dPR–Nov

s
)1 S(dSnowdepth–Mar

s
) . (3a)

The second section of Table 2 below ‘‘Adding

March snow-depth anomalies’’ shows the co-

efficients from Eq. (3a), which adds the standardized

snow-depth anomaly for March to the April multiple

regression analysis. The number of months drops

from 620 to 552, because some years have no snow-

depth measurements. We see the R2 values for the

five variables all increase, except for Tx. The co-

efficients for the March snow-depth anomalies

are substantial (confidence .99.9%), while the co-

efficients B–G for the precipitation anomalies are

smaller in magnitude and lower in confidence than in

Table 2 below ‘‘Opaque cloud and precipitation,’’

understandably because the March snow depth has

accumulated from the frozen winter precipitation.

Our physical interpretation is that as the snowpack

builds over the winter, there will be some thawing and

refreezing, and the snowpack density is likely to

increase. March snow depth alone captures much,

but not all of the cold season precipitation anomaly

signal.

In April, however, the high albedo of the remaining

snowpack plays a direct climate role, and this is a

more fundamental issue. Days with no snow cover

have an unstable daytime BL, while days with re-

flective snow cover are 108C cooler with a stable BL

and a smaller diurnal range (Betts and Tawfik 2016;

Betts et al. 2016). Betts et al. (2014a) found a nearly

linear relation between Tm and DRHR in March

and April and the fraction of days with surface

snow cover.

So we computed the standardized April snow cover

frequency anomaly from the fraction of days in April

with nonzero snow depth and added this to the multiple

regression Eq. (1) of the April anomalies on opaque

cloud and precipitation anomalies to give

dY–Apr
s
5A(dOPAQ

m
–Apr

s
)1B(dPR–Apr

s
)1C(dPR–Mar

s
)1D(dPR–Feb

s
)1E(dPR–Jan

s
)

1F(dPR–Dec
s
)1G(dPR–Nov

s
)1T(dSnowcover–Apr

s
) . (3b)

Table 2 below ‘‘Adding fraction of April days with

snow cover’’ shows the coefficients from Eq. (3b). There

is an increase in R2 for all variables, and especially for Tx,

where snow cover frequency anomalies have as large

an impact as opaque cloud anomalies. Note that the

coefficients G for dPR–Novs for dRHns, dRHms, and

dPLCLxs are not significant, but the coefficients for

dDTRs and dTxs have a confidence .99% in Table 2
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when snow depth or snow cover are included. It is

possible that this is the cooling impact in April

coming from the melt of soil-ice frozen back in

November.

Figure 1 shows the multiple regression fits from Eq.

(3b) for the monthly anomalies for four variables in

physical units, where we have color sorted the points by

quintiles of increasing standardized snow cover fre-

quency. The standardization has been removed by

multiplying by the SD of dTm, dRHm, and dPLCLm.

Figure 1 (top left) is for DTR, for which the SD of the

April anomalies is 1.88C; Fig. 1 (top right) is for Tx, for

which the SD is 3.18C; Fig. 1 (bottom left) is for dRHn,

for which the SD is 9.4%; and Fig. 1 (bottom right) is

for dPLCLx, for which the SD is 36.2 hPa. The multiple

regression R2 values are also the slopes of the linear fits

shown. Figure 1 illustrates that large variability in the

April climate is partly related to the frequency of days

in April with snow cover. April mean Tx, DTR, and

PLCLx decrease and RHn increases if the fraction of

days with snow cover increases.

Table 2 below ‘‘Opaque cloud and precipitation’’

is a conventional treatment of the mean April clima-

tology, which is itself an average of two distinct cli-

matologies with and without snow (Betts and Tawfik

2016). So it is not surprising that mean April climate,

especially Tx, has a dependence on the fraction of

days in the month with snow cover, as well as cloud

cover and lagged precipitation. The conventional

averaging of the snow and no-snow climatologies

FIG. 1. Table 2 below ‘‘Adding fraction of April days with snow cover’’ regression fits (R2 values in parentheses)

for April anomalies of (top left) DTR, (top right) Tx, (bottom left) RHn, and (bottom right) PLCLx on April opaque

cloud and snow cover frequency and April–November precipitation; color sorted by quintiles of increasing stan-

dardized snow cover frequency.
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raises fundamental issues, but we will defer these to

future work.

After April the warm season memory of precipitation

does not extend back through the cold season. For June–

August, there is some memory of precipitation back to

March (see next section).

4. Warm season monthly anomaly regression fits

The warm season months May–September have no

snow, and the coupling between opaque cloud cover and

the diurnal ranges of T, RH, PLCL, and uE is quite uni-

form (Betts and Tawfik 2016). In this section, we will

show the joint dependence on opaque cloud and lagged

monthly precipitation.

a. Regression statistics by month

We derived the coefficients A–G in Eq. (1) for each

variable for each month, merging the six stations in

Saskatchewan with the six in Alberta. Independently,

the regional clusters yielded similar coefficients (not

shown), and the merger reduces RMS uncertainty in

the coefficients. Table 3 shows the coefficients for

each month for anomalies dDTRs, dRHns, dPLCLxs,

and dQTxs. The leading coefficients A for dDTRs,

dRHns, and dPLCLxs show a strong correlation to

dOPAQm for the current month, with a minimum in A

in June, when the solar zenith angle has a minimum.

The coefficients (B–G) for precipitation show a gen-

erally decreasing dependence from the current month

TABLE 3. Standardized multiple regression coefficients for the warm season monthly anomalies of dDTRs, dRHns, dPLCLxs, and dQTxs .

For confidence notation, see Table 2.

dDTRs dRHns dPLCLxs dQTxs

May

620 months R2 0.74 0.72 0.72 0.23

dOPAQm–Mays (A) 20.59 6 0.02 0.61 6 0.02 20.78 6 0.03 (0.04 6 0.05)

dPR–Mays (B) 20.23 6 0.02 0.33 6 0.02 20.35 6 0.03 0.51 6 0.05
dPR–Aprs (C) 20.10 6 0.02 0.13 6 0.02 20.18 6 0.03 (0.04 6 0.04)

dPR–Mars (D) (20.02 6 0.02) 0.07 6 0.02 20.08 6 0.03 0.07 6 0.04

dPR–Febs (E) (0.03 6 0.02) (20.03 6 0.03) (0.06 6 0.04)

June

617 months R2 0.68 0.67 0.66 0.33

dOPAQm–Junes (A) 20.53 6 0.02 0.59 6 0.03 20.74 6 0.03 (0.02 6 0.04)

dPR–Junes (B) 20.30 6 0.02 0.41 6 0.03 20.44 6 0.03 0.65 6 0.04

dPR–Mays (C) 20.17 6 0.02 0.18 6 0.02 20.26 6 0.03 0.07 6 0.04

dPR–Aprs (D) (20.03 6 0.02) 0.06 6 0.02 20.10 6 0.03 (0.02 6 0.04)

dPR–Mars (E) 20.05 6 0.02 0.04 6 0.02 (20.05 6 0.03) 0.08 6 0.04

July

614 months R2 0.68 0.61 0.62 0.26

dOPAQm–Julys (A) 20.56 6 0.03 0.50 6 0.03 20.63 6 0.04 (0.03 6 0.04)

dPR–Julys (B) 20.31 6 0.02 0.37 6 0.03 20.45 6 0.04 0.34 6 0.04

dPR–Junes (C) 20.22 6 0.02 0.34 6 0.02 20.44 6 0.04 0.38 6 0.04
dPR–Mays (D) 20.12 6 0.02 0.11 6 0.03 20.16 6 0.03 0.16 6 0.04

dPR–Aprs (E) 20.04 6 0.02 0.06 6 0.03 20.06 6 0.03 0.12 6 0.04

dPR–Mars (F) 0.06 6 0.03 20.07 6 0.03 0.10 6 0.04

August

615 months R2 0.80 0.76 0.74 0.24

dOPAQm–Augs (A) 20.68 6 0.02 0.63 6 0.03 20.81 6 0.03 (20.06 6 0.05)

dPR–Augs (B) 20.24 6 0.02 0.40 6 0.03 20.45 6 0.03 0.44 6 0.05
dPR–Julys (C) 20.12 6 0.02 0.22 6 0.02 20.29 6 0.03 0.19 6 0.04

dPR–Junes (D) 20.04 6 0.02 0.12 6 0.02 20.16 6 0.03 0.29 6 0.03

dPR–Mays (E) 20.04 6 0.02 (0.02 6 0.02) 20.05 6 0.03 20.07 6 0.04

dPR–Aprs (F) 0.06 6 0.02 20.08 6 0.03 0.11 6 0.04
dPR–Mars (G) 0.07 6 0.02 20.09 6 0.03 0.07 6 0.04

September

615 months R2 0.84 0.78 0.78 0.15

dOPAQm–Seps (A) 20.73 6 0.02 0.77 6 0.03 20.99 6 0.03 20.35 6 0.05
dPR–Seps (B) 20.21 6 0.02 0.33 6 0.03 20.34 6 0.03 0.32 6 0.05

dPR–Augs (C) 20.10 6 0.02 0.24 6 0.02 20.32 6 0.03 0.28 6 0.04

dPR–Julys (D) (20.02 6 0.02) 0.05 6 0.02 20.07 6 0.03

dPR–Junes (E) 0.04 6 0.02 20.06 6 0.03
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to the preceding months, and memory goes back fur-

ther for dRHns and dPLCLxs than for dDTRs, In con-

trast, afternoon mixing ratio dQTxs has very little

dependence on dOPAQm until September, and a

more complex dependence on precipitation. For

May and June, the coefficients B for the current

month are far larger than C, D, and E for past

months (where some are not significant), but for

dQTxs in July, all the precipitation coefficients (B–F)

have.95% confidence back to March. It is possible that

precipitation memory is long in July at the peak of the

growing season because rooting is deepest. Note that

the variables that are strongly correlated to dOPAQm

and have higher values of R2 are those that have a

large diurnal cycle driven by the cloud radiative

forcing. As the correlation coefficients with lagged

precipitation anomalies decrease going back to earlier

months, their contribution to increasing R2 values

become small.

Betts et al. (2014a) showed that there is a large

drawdown of total water storage on the landscape dur-

ing the growing season, and Betts et al. (2013b) showed

that more intensive cropping has cooled and moistened

the growing season climate in the past two decades. For

July and August, there is memory of precipitation

anomalies back toMarch for dRHns, dPLCLxs, and dQTxs,

but not for dDTRs, suggesting perhaps some residual

memory of snow in the water budget. This is broadly

consistent with earlier modeling work that showed that

spring moisture availability controls the evolution of

temperature and, in some cases, precipitation during the

summer months (Fennessy and Shukla 1999; Kim and

Wang 2007; Wu et al. 2007). By September, after the

harvesting of annual crops (Betts et al. 2013b), this long

memory shrinks back to June and July for dRHns and

dPLCLxs.

b. Merge of May–August

Clearly there is seasonal structure in the coefficients in

Table 3, and the memory of precipitation is longer in

July and August. However, if we merge the growing

season months MJJA for which we have 2466 months,

the RMS uncertainty of the regression coefficients is

reduced. This gives a unified description for the growing

season coupling of the thermodynamic variables on

cloud and lagged precipitation. We retain precipitation

anomalies for just 4 months.

Table 4 lists our full set of standardized monthly

anomalies of T, RH, Q, uE, and PLCL and gives the

standardized regression coefficients for A–E in Eq. (1).

The precipitation coefficients decrease going back in

time, and many of them are significant at the 99% level

(boldface). The coefficients for E are generally small.

Note that there is a large variation in the explained

variance represented by R2.

The first groups are the regression coefficients for the

temperature anomalies, dTxs, dTms, dTns, and dDTRs,

which were all standardized by the SD of dTm. The fit

represented byR2 is largest for DTR and decreases from

dTxs to dTns. All the temperature variable anomalies

show a strong inverse correlation with opaque cloud

anomalies that reflect the downward SW radiation. The

warm season is dominated by negative SWCF: opaque

clouds reduce dTxs, dTms, and dDTRs (Betts et al.

TABLE 4. Standardized multiple regression coefficients for the MJJA growing season merge of 2466 months.

Variable A (dOPAQms) B (dPR0s) C (dPR1s) D (dPR2s) E (dPR3s) R2

dTxs 20.95 6 0.02 20.07 6 0.02 20.16 6 0.02 (20.01 6 0.02) 20.03 6 0.02 0.58

dTms 20.67 6 0.02 0.03 6 0.02 20.10 6 0.02 0.43

dTns 20.34 6 0.02 0.18 6 0.02 (20.01 6 0.02) 0.04 6 0.02 0.13

dDTRs 20.61 6 0.01 20.26 6 0.01 20.15 6 0.01 20.05 6 0.01 20.03 6 0.01 0.73

dRHns 0.59 6 0.01 0.37 6 0.01 0.23 6 0.01 0.09 6 0.01 0.03 6 0.01 0.69

dRHms 0.53 6 0.01 0.32 6 0.01 0.24 6 0.01 0.11 6 0.01 0.04 6 0.01 0.61

dRHxs 0.38 6 0.02 0.20 6 0.02 0.20 6 0.01 0.10 6 0.01 0.04 6 0.01 0.36

dDRHRs 20.22 6 0.01 20.18 6 0.01 20.03 6 0.01 0.26

dQTxs (20.01 6 0.02) 0.49 6 0.02 0.22 6 0.02 0.17 6 0.02 0.24

dQms 20.06 6 0.02 0.41 6 0.02 0.22 6 0.02 0.16 6 0.02 0.03 6 0.02 0.22

dQTns 20.06 6 0.02 0.33 6 0.02 0.15 6 0.02 0.13 6 0.02 0.03 6 0.02 0.17

duExs 20.55 6 0.02 0.28 6 0.02 0.08 6 0.02 0.12 6 0.02 0.21

duEms 20.42 6 0.02 0.30 6 0.02 0.09 6 0.02 0.11 6 0.02 0.17

duEns 20.22 6 0.02 0.34 6 0.02 0.09 6 0.02 0.11 6 0.02 0.13

dDuERs 20.32 6 0.01 20.06 6 0.01 0.37

dPLCLxs 20.76 6 0.02 20.42 6 0.02 20.31 6 0.01 20.13 6 0.01 20.05 6 0.01 0.68

dPLCLms 20.55 6 0.01 20.30 6 0.01 20.25 6 0.01 20.12 6 0.01 20.04 6 0.01 0.62

dPLCLns 20.30 6 0.01 20.15 6 0.01 20.16 6 0.01 20.08 6 0.01 20.03 6 0.01 0.36

dDPLCLRs 20.46 6 0.01 20.27 6 0.01 20.15 6 0.01 20.05 6 0.01 2 0.58
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2013a, 2015; Betts and Tawfik 2016). The negative

values of A decrease from dTxs to dTns. The dDTRs

has a negative correlation to both cloud anomalies and

to precipitation anomalies going back for 3 months.

Note that because all the temperatures were stan-

dardized by the SD of dTm, the coefficients for the

diurnal range are the difference of the corresponding

coefficients for the maximum and minimum. For exam-

ple, A(dDTRs)520:615A(dTxs)2A(dTns). Further,

B(dDTRs)520:265B(dTxs)2B(dTns) (rounded to

two significant figures) shows the role of the positive

correlation of Tn with precipitation anomalies for the

current month.We see that the coefficientsB change sign

in the sequence from dTxs to dTms to dTns. This means

that although Tm falls strongly with cloud, its coupling to

precipitation is weak because the coefficients B and C

have opposite sign, in contrast to the RH anomalies dis-

cussed below. This regression analysis clearly shows that

mean temperature anomalies dTms are strongly coupled

to cloud, and therefore solar forcing, but rather weakly to

precipitation, while dDTRs (and dTxs) decrease with

both cloud and precipitation. We cannot infer causality

from multiple regressions, but negative B for dTxs is

consistent with evaporation from moist soils reducing Tx,

and the positiveB for dTns is consistent with the fact that

underwetter conditions the fall ofTn at night is limited by

saturation.

The next group is the four RH anomalies, dRHxs,

dRHms, dRHns, and dDRHRs. For the first three, the

regression coefficients show that positive RH anomalies

are correlated with positive cloud and precipitation

anomalies, and the coefficients are significant for both

present and three past months. The coefficients for

dDRHRs are negative because dRHns increases faster

with cloud and precipitation than dRHxs, and the co-

efficients are significant for only one past month. The

fit R2 decreases monotonically from the afternoon

minimum dRHns to dRHms to the sunrise maximum

dRHxs to dDRHRs. The diurnal cycle of T and RH

have an inverse dependence on opaque cloud, reach-

ing Tx and RHn in the afternoon at the same time

(Table 1). This is related to the fact that mixing ratio

Q is tightly constrained by BL transports, which we

will discuss below. But over land, near-surface RH is

constrained by the availability of soil moisture for

evaporation from bare soil and transpiration (which is

often modeled as a stomatal resistance to evaporation;

e.g., Monteith 1977; Collatz et al. 1991; Betts et al.

2004). Soil moisture anomalies are related in turn to

precipitation anomalies. We see that afternoon RHn

and mean RHm anomalies have a strong positive

correlation to precipitation anomalies and a large R2.

However, RHx, which increases with precipitation,

is limited if surface saturation is reached and dew

forms before sunrise. Because the latent heat release

slows the temperature fall, it is consistent that RHx

and Tn anomalies are both positively coupled to wet-

ter precipitation anomalies for the current month

(coefficient B).

Table 4 next shows the coefficients for dQTxs, dQms,

and dQTns, where dQTx and dQTn have been recomputed

using afternoonTx, RHn and sunriseTn, RHx (see Table 1).

The fit R2 is much smaller for all these Q variables

than for RH, partly because their diurnal range is small,

and their correlation to opaque cloud is very small, in

fact on the order of zero forQTx. All threeQ anomalies

have a positive correlation to precipitation anomalies,

with a general decrease in the coefficients B, C, and D

from QTx to QTn. The fact that Q is correlated to pre-

cipitation anomalies, but very little to cloud, is related to

the inverse diurnal dependence of T and RH on cloud.

The positive coefficients B–E are consistent with in-

creased precipitation increasing evapotranspiration.

The diurnal variation of mixing ratio Q has a double

maxima and minima, which we will discuss in more

detail in section 4d.

The next group in Table 4 shows the coefficients for

duExs, duEms, duEns, and dDuERs. The first three show

the decrease with increased cloud but an increase with

precipitation. The R2 values are small, even though the

coefficients have 99% confidence. The diurnal range of

uE is dominated by the dependence of DTR on opaque

cloud. The final group in Table 4 is the four PLCL

anomalies: PLCLx is generally representative of after-

noon cloud base (Betts et al. 2013a). Variable PLCL is a

function of T and RH, and we see that negative PLCL

anomalies are coupled to positive cloud and pre-

cipitation anomalies. The coefficients are largest for

afternoon dPLCLxs, for whichR
2 is high. The coefficients

for dPLCLxs, dPLCLms, and dPLCLns are all 99% significant

for both present and three past months, showing that

cloud-base anomalies have a long memory of pre-

cipitation anomalies in the growing season. The two

afternoon anomalies, duExs and dPLCLxs, are most

closely coupled to moist convective instability (not

shown), which is favored by higher uEx and lower

cloud base.

Table 4 summarizes the multiple regression corre-

lation coefficients between warm season near-surface

variables and opaque cloud and lagged precipitation

and gives a quantitatively useful target for the evalu-

ation of the coupled processes in models. Two im-

portant conceptual results emerge for this fully

coupled land surface climate system on the Canadian

Prairies. Monthly mean temperature anomalies are

strongly correlated to opaque cloud but weakly

948 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



correlated to precipitation. Anomalies of Qm and

especially afternoon QTx are coupled to precipita-

tion anomalies but have little correlation to opaque

cloud.

c. Visualizing monthly climate dependence on
opaque cloud and precipitation

Betts and Tawfik (2016) showed by binning the

hourly data based on daily opaque cloud cover that

the warm season months (with no snow on the

ground) had a very similar coupling between opaque

cloud and the diurnal ranges DTR, DRHR, DuER,

and DPLCLR. Given the complexity of the land–

atmosphere coupling, can we show graphically the

climate dependence on precipitation as well as

opaque cloud? In the previous section, we used

multiple regressions to quantify the correlation of

the monthly anomalies of temperature and humidity

variables to anomalies of opaque cloud and pre-

cipitation. However, Table 4 shows that the co-

efficients for the lagged precipitation anomalies

differ considerably for different variables, so we must ap-

proximate. Following Betts et al. (2014a), we can define a

simplified weighted precipitation anomaly dPRwt, based

on precipitation for just the current and the past month:

dPR
wt
5 0:6(dPR0)1 0:4(dPR1). (4)

This simplification, with this choice of coefficients in the

ratio of 1.5, captures much of the precipitation de-

pendence for the variables that have the highestR2, such

as DTR, RHn, andPLCLx, because these have the ratio of

the coefficients B/C ’ 1.5 in Table 4.

The x axis of Fig. 2 is 0.1 bins of OPAQm 5
dOPAQm 1 0:46, where 0.46 is the mean opaque cloud

over all the months. For each MJJA month (total

2466 months) we computed dPRwt from Eq. (4) and

added the MJJA mean precipitation rate of

1.8mmday21 to give PRwt 5 dPRwt 1 1:8. We then

stratified the data into three ranges of PRwt of ,1.2,

1.2–2, and .2mmday21, which have mean values of

0.9, 1.6, and 2.6mmday21. There are (531, 1103, and

FIG. 2. Coupling between (top left) DTR, Tx, and Tn; (top right) DRHR, RHx, and RHn; (bottom left) DuER,

uEx, and uEn; and (bottom right) DPLCLR, PLCLx, and PLCLn and opaque cloud fraction and weighted precipitation

(mm day21).
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832) months in these three PRwt bins. To generate

Fig. 2, we compute for each variable bin the mean and

standard error (SE) of the anomalies and add back the

MJJA variable means.

Figure 2 (top left) shows DTR and its components

Tx and Tn; Fig. 2 (top right) shows DRHR, RHx, and

RHn; Fig. 2 (bottom left) shows DuER, uEx, and uEn;

and Fig. 2 (bottom right) shows DPLCLR, PLCLx, and

PLCLn. The strong dependence on opaque cloud

(Betts and Tawfik 2016) clearly dominates most of

these climate variables, since T falls and RH in-

creases with increasing cloud. This in turn is connected

to the weak dependence of Q on cloud (Table 4

and section 4d). The color scheme is red and blue,

respectively, for the dry and wet weighted pre-

cipitation bins. As PRwt falls, DTR increases faster

than Tx.

Figure 2 (top right) shows that RHx and RHn (and

RHm, not shown) increase with both cloud and PRwt,

but because afternoon RHn increases faster than RHx,

DRHR decreases with increasing PRwt. Note the rise

of RHx with PRwt toward saturation. If RHx reaches

saturation at the surface on individual days, conden-

sation of dew and the release of latent heat limit the

fall of Tn.

Figure 2 (bottom) shows the variables that de-

termine the BL coupling to clouds and precipitation.

Afternoon PLCLx and uEx determine the cloud-base

height and moist adiabat. Both uEx and uEn increase

with PRwt, but the diurnal range DuER depends pri-

marily on cloud. All the PLCL variables decrease with

increasing PRwt. The sunrise minimum of PLCLn falls

with PRwt, as the surface moves toward saturation. So

higher precipitation, which we can loosely associate

with increased daytime evaporation, corresponds

with a lower monthly mean cloud base and higher uE
in the afternoon, which would both favor increased

convective instability.

d. The dependence of the diurnal cycle of Q on
opaque cloud and precipitation

In the warm season, the diurnal cycle of mixing ratio

Q has two maxima and minima, except under cloudy

conditions (Betts et al. 2013a; Betts and Tawfik 2016).

There is a sunrise minimum, a rise to a midmorning

maximum while evaporation is trapped beneath the

nocturnal inversion, then a fall to an afternoon mini-

mum, as water vapor is rapidly transported upward

into a deep daytime BL and into clouds, and a rise

again to an evening maximum as the surface layer

cools and uncouples from the deep BL. We have seen

in section 4b that QTx, Qm, and QTn depend on pre-

cipitation anomalies (although regression R2 are

small), but have only weak dependence on opaque

cloud (Table 4). The diurnal range of Q is relatively

small, but we can graph its dependence on anomalies

of opaque cloud cover (i.e., dOPAQm) and weighted

precipitation anomalies (i.e., dPRwt; mmday21), de-

rived from Eq. (4).

Figure 3 (left), derived from the MJJA growing season

merge, shows the stratification by dOPAQm into four

ranges: dOPAQm less than 20.08, from 20.08 to 0, from

0 to 0.08, and greater than 0.08, based on the SD of

dOPAQm ’ 0.08. There are (371, 839, 909, and 347)

months in these respective bins. We averaged in bins the

diurnal cycle of the anomalies from the station monthly

means, calculate the SE, and add back the 12-station

MJJA mean of Q. The legend shows the mean value for

each dOPAQm bin, and in parentheses the corresponding

mean of dPRwt. As mean dOPAQm increases from20.12

FIG. 3. Dependence of diurnal cycle of Q on (left) opaque cloud bins and (right) weighted precipitation bins.
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to 10.12, mean dPRwt increases from 20.43

to 10.42mmday21, and there is a small increase in Qm.

The sunrise minimum of Q occurs at the minimum

temperature, when the nighttime BL is shallow with a

strong temperature inversion (Table 1). As the surface net

radiation turns positive after sunrise, it drives increasing

surface sensible and latent heat fluxes. This warms and

moistens a shallow ML under the stable inversion, and

there is a steep rise of Q. When the surface potential

temperature reaches that of the top of the capping in-

version in midmorning, the ML deepens more quickly,

usually into a residual deep ML from the previous day,

mixing with drier air from above, and so Q falls to the

afternoon minimum. With less cloud and more solar

forcing, the ML can grow deeper, and mix with more dry

air from above, so the fall of Q is a little larger (Fig. 3).

Figure 3 (right) is the corresponding partition into

four ranges of weighted precipitation anomalies: dPRwt

less than20.7, from20.7 to 0, from 0 to 0.7, and greater

than 0.7mmday21, based on the SD of dPRwt ’
0.7mmday21. There are (387, 961, 745, and 373) months

in these respective bins. The legend shows the mean

value for each dPRwt bin, and in parentheses the cor-

responding mean of dOPAQm. With increasing dPRwt,

there is a large upward shift of the mean diurnal cycle

of Q, as Qm increases with precipitation anomalies,

which we can associate with increased soil moisture

and evaporation. As mean dPRwt increases from 20.99

to 11.23mmday21, mean dOPAQm increases from

20.05 to 10.05, and the fall of Q from midmorning

maximum to afternoon minimum is reduced as in Fig. 3

(left). Clearly we are dealing with a fully coupled system,

but Fig. 3 shows that climatologically the amplitude of the

diurnal cycle of Q increases a little with reduced cloud

cover (increased solar forcing and vertical mixing), and

there is a large upward shift in the diurnal cycle with in-

creased weighted precipitation, presumably from in-

creased evaporation.

Figure 4 shows the separate months with the same

PRwt partition as Fig. 3 (right). There is a significant

seasonal cycle, and the range ofQ has peak amplitude in

July in the middle of the growing season.

e. Nonlinear change of regression coefficients from
wet to dry conditions

Betts et al. (2014a) showed that in the growing season

on the Prairies the impact of precipitation anomalies is

damped by 56% 6 9% by the uptake of total water

storage, as measured by the Gravity Recovery and Cli-

mate Experiment (GRACE): that is, the water uptake

increases when precipitation anomalies are negative and

vice versa. Stratifying the regression analysis by pre-

cipitation anomalies supports this conclusion.

There are 2466 station months in the MMJA merge of

the Prairie data, sufficient to further split the multiple

regression analysis into ranges based on precipitation

anomalies for the current month (dPR0). For the MJJA

dPR0 precipitation anomalies, the SD (indicated by s) is

1.1mmday21, so we split the data into four dry to wet

ranges: (less than21s, from21s to 0, from 0 to 1s, and

greater than 1s), which contain (331, 1069, 724, and 342)

months, respectively.

Figure 5 shows themultiple regression coefficientsA–C

for RHn and DTR as a function of precipitation anomaly.

All coefficients have a 99.9% confidence. The values just

above the x axis are the mean monthly precipitation in

millimeters per month for each range. The coefficients A

for the dependence on opaque cloud show an upward

change with increasing precipitation in the wettest part of

the range. However, the precipitation coefficients B

(dPR0) for the current month show a strong asymmetric

response, increasing as monthly precipitation decreases in

magnitude from 3.8 (verywet conditions) to 1.3mmday21

(slightly dry conditions, as the mean of all months is

1.8mmday21). This change in B implies an increased

sensitivity of DTR, RHn (and by inference evapotrans-

piration) to precipitation anomalies from very wet to

slightly dry conditions. This is consistent with the increase

in total surface water extraction fromwet to dry conditions

shown by theGRACEdata (Betts et al. 2014a). However,

under very dry conditions (PR05 0.4mmday21), theB

coefficients decrease slightly and the standard de-

viation is larger. This suggests that with a month-long

drought, soil moisture extraction by roots is less able to

maintain evaporation, with a measurable climate im-

pact on DTR and RHn.

The solid squares in Fig. 5 are the mean coefficients for

A–C fromTable 4 forMJJA.The solid red andblue squares

show that the multiple linear regression does a relatively

good job approximating mean values for A and C, which

show the least variation with precipitation anomaly. How-

ever the solid black squares B for both DTR and RHn

corresponding with PR0 are a poor fit to the nonlinear

coupling. We conclude that the linear analysis of the full

dataset is only an approximation for many complex non-

linear processes, involving the growing season phenology of

crop and root growth, as well as the stomatal response to

light, atmospheric conditions, and soil moisture.

5. Correlation between cloud and climate variables

The previous sections are framed in terms of the de-

pendence of climate variables on opaque cloud and

lagged precipitation. But since the ability of models to

predict cloud may be a limiting factor in seasonal fore-

casting and climate change projections, the inverse
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problem is also of interest. How tightly is opaque cloud

cover coupled to precipitation and other climate

variables?

The regression of standardized opaque cloud anom-

alies on the standardized monthly precipitation anom-

alies for the MJJAS set of 12 stations (3081 months) is

dOPAQ
ms

5 0:48(60:02)dPR0
s

(R2 5 0:23). (5)

The regression of standardized opaque cloud anomalies

on the standardized monthly climate anomalies dDTRs,

dTms, and dRHms is

dOPAQ
ms

520:64(60:02)dDTR
s
2 0:23(60:01)dT

ms

1 0:11(60:01)dRH
ms

,

(6)

with R2 5 0.72, much higher than Eq. (5). All the co-

efficients in both Eqs. (5) and (6) are significant above

the 99.9% level. If dPR0s is added to the regression

Eq. (6), its coefficient is on the order of zero and R2 is

unchanged, meaning that the precipitation information

is already contained in the three climate variables.

Figure 6 shows the opaque cloud regression Eq. (5) on

precipitation (Fig. 6, left) and regression Eq. (6) (Fig. 6,

right) on the climate variables. The unstandardized

cloud cover anomalies have been retrieved by multi-

plying by the SD of OPAQm 5 0.084. For both, the

linear regression fit has the same slope as the R2. Al-

though Fig. 6 contains no more information than Eqs.

(5) and (6), we show it for its conceptual importance.

Figure 6 (left) shows that cloud cover is weakly coupled

to precipitation data on monthly time scales, while

Fig. 6 (right) in contrast shows that opaque cloud cover

is tightly coupled to three other climate variables that

are routinely observed.

We cannot separate cause and effect in this fully

coupled system. However, Eq. (6) flags three important

issues. First is the strong inverse correlation of mean

FIG. 4. Seasonal cycle of diurnal cycle of Q, stratified by weighted precipitation.
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opaque cloud cover and DTR, which we have seen

earlier in Table 4. This has long been known (e.g., Dai

et al. 1999). The second is the small climate correlation

between increases of OPAQm with RHm, which from a

physical perspective is not surprising. The third is the

inverse correlation between OPAQm and Tm. This is of

potential importance, since if there is a decrease in cloud

cover over land with increasing temperature, this is a

potential positive climate feedback. This has been seen

in the idealized coupled equilibrium model of Betts and

Chiu (2010), so it deserves further analysis with fully

coupled models. However, we cannot draw conclusions

here because these data contain seasonal variability and

decadal changes that have been impacted by in-

tensification of land use (Betts et al. 2013b).

6. Discussion and conclusions

The Canadian Prairie dataset with hourly opaque

cloud observations as well as standard meteorological

observations has transformed our understanding of hy-

drometeorology, because the cloud observations are

good enough to represent the daily LW and SW cloud

forcing of the diurnal cycle over land (Betts and Tawfik

2016). This analysis uses multiple linear regression of

standardized monthly anomalies, computed from 620

station years of hourly Prairie climate data to calculate

the correlation coefficients between monthly climate

anomalies and opaque cloud, a surrogate for radiation,

and lagged precipitation anomalies, a much weaker

surrogate for soil moisture. We find that while monthly

climate is strongly influenced by cloud cover for the

current month, it also has memory of precipitation

anomalies going back for many months.

Starting with April at the end of snowmelt, we find

that April climate anomalies of T, RH, Q, and PLCL

have memory of precipitation anomalies back 5 months

to freeze-up in November. Increased opaque cloud

cover for April is coupled to cooler temperatures and

higher RH, which is consistent with the SWCF. In-

creased cold season precipitation from November to

March is coupled to a cooler and moister April climate

with a lower afternoon LCL. Here several physical

processes are probably involved. The memory of

FIG. 6. Regression of dOPAQm on (left) precipitation from Eq. (5) and (right) climate variables from Eq. (6) with

linear fits.

FIG. 5. Dependence of MJJA regression coefficients on pre-

cipitation anomaly dPR0 for the current month. The values just

above the x axis are themeanmonthly precipitation (mmmonth21)

for each group. The solid squares are the A–C linear regression

coefficients from Table 4.

APRIL 2017 BETT S ET AL . 953



precipitation anomalies over the cold season is mostly

stored in the snowpack till spring, when melt absorbs

energy and cools the surface, and the melt also provides

water for evaporation, which also cools temperature and

increases RH. In addition the freeze-up of the soil in

November may similarly preserve November pre-

cipitation anomalies as soil ice through the cold season

till spring melt.

However, reflection by the high albedo of the

remaining snowpack also plays a role. We found that

including the fraction of days in April with snow cover,

along with cloud cover and lagged precipitation in these

multiple regressions for the mean April climate anom-

alies, increases R2 values, especially for maximum tem-

perature. This is not surprising, given the role of reflective

snow cover as a fast climate switch between different

climatologies (Betts et al. 2014b; Betts and Tawfik 2016),

but this raises fundamental issues about the conventional

monthly averaging of these snow and no-snow climatol-

ogies, which we will defer to future work.

For all the warm season months, increased opaque

cloud cover is again coupled to cooler temperatures and

higher RH, but the memory of lagged precipitation

anomalies is longest in July and August, probably be-

cause crop rooting is deepest. The climates in MJJA

have memory of precipitation anomalies back to the

beginning of snowmelt inMarch. In September, after the

harvest of crops, precipitation memory goes back

weakly only to June.

We merged the months MJJA in order to calculate a

single set of coefficients that couple all the growing sea-

son climate anomalies to opaque cloud and precipitation

for the current month and precipitation for three pre-

ceding months. In the warm season, Tm is strongly cor-

related to opaque cloud anomalies, but only weakly to

precipitation anomalies. Mixing ratio anomalies are cor-

related to precipitation, but only weakly to cloud. The full

sets of coefficients given in Table 4 provide a useful

measure of the behavior of the fully coupled system.

To show graphically the coupled dependence of the

diurnal ranges of T, RH, uE, and PLCL, we stratify by

opaque cloud and a simplified weighted precipitation,

calculated from only the precipitation for the current

and preceding month. The monthly climate dependence

on opaque cloud dominates (Betts and Tawfik 2016),

and T falls and RH increases with increasing cloud. This

in turn is connected to the very weak dependence of Q

on cloud. As weighted precipitation falls, DTR increases

faster than Tx, while afternoon RHn falls faster than

RHx. Higher precipitation anomalies are coupled to a

lower afternoon LCL, a surrogate for cloud base, and a

higher afternoon equivalent potential temperature, which

both favor increased convection and precipitation. The

diurnal cycle of Q shifts strongly upward with increasing

precipitation anomalies, and the fall of Q from morning

maximum to afternoon minimum decreases with increas-

ing opaque cloud.

When the growing season is stratified by precipitation

anomaly for the current month, we find that the coupling

varies with precipitation. Regression coefficients on the

current month precipitation anomalies increase from

wet to slightly dry conditions, until drought conditions

are reached. This is consistent with increased uptake of

soil water when monthly precipitation is low, in agree-

ment with satellite observations from GRACE (Betts

et al. 2014b). This nonlinear system behavior shows the

limits ofmultiple linear regression. The linear analysis of

the full dataset is only an approximation for many

complex nonlinear processes, involving the growing

season phenology of crop growth, the stomatal response

to light, atmospheric conditions and soil moisture, and

extremes of precipitation.

To explore the inverse problem, which is the corre-

lation of cloud anomalies to climate anomalies, we

performed a multiple regression analysis of monthly

opaque cloud cover on monthly climate variables DTR,

Tm, and RHm. The resultingR
25 0.72 confirms the tight

relationship in the fully coupled land–BL system. Add-

ing monthly precipitation provides no more skill, sug-

gesting that all the available information is already

embedded within DTR, Tm, and RHm.

The work presented here is important because it con-

firms observationally that the coupled land–atmosphere–

cloud system remembers precipitation anomalies for as

long as 5 months. This means that increases in seasonal

forecasting skill may be possible with improved repre-

sentation of cloud and precipitation coupling in models.

Similar regression analyses to those presented in this

paper using cloud and climate observations may be ap-

plied to model outputs, as a strategy to evaluate the

model realism in order to improve the representation of

the land–BL–cloud–atmosphere system in both forecast

and climate models.
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