Land-cloud-climate Coupling on the Canadian Prairies

Dr. Alan K. Betts (Atmospheric Research, Pittsford, VT 05763) Ray Desjardin, D. Cerkowniak (Agriculture-Canada) and Ahmed Tawfik (NCAR)

> akbetts@aol.com http://alanbetts.com CGU/AGU Montreal

May 6, 2015

Outline

- Northern latitude climate
 - Large seasonal cycle
 - Cold winters with snow
 - Freezing point of water critical
 - Summer hydrometeorology
 - T and RH depend on radiation and precip.

- Observational evaluation of models

Climate Processes

- Solar seasonal cycle
- Precipitation
- Reflection of SW
 - <u>Clouds</u>: Water drops, ice crystals
 - Cools surface
 - <u>Snow and ice</u> on surface
 - Cools surface
- Water vapor/<u>clouds</u> trap LW
 - Re-radiation down warms surface

15 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, <u>opaque/reflective cloud</u>
- Daily precipitation and snowdepth

References

- Betts, A.K., R. Desjardins and D. Worth (2013a), <u>Cloud radiative</u> forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118,* 1–19, doi:10.1002/jgrd.50593
- Betts, A.K., R. Desjardins, D. Worth and D. Cerkowniak (2013b), Impact of <u>land-use change</u> on the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos.*, 118, 11,996–12,011, doi:10.1002/2013JD020717
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014a), Coupling of <u>winter climate transitions</u> to snow and clouds over the Prairies. *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021168.
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014b), <u>Climate coupling between temperature, humidity, precipitation and</u> <u>cloud cover over the Canadian Prairies</u>. *J. Geophys. Res. Atmos*. 119, 13305-13326, doi:10.1002/2014JD022511
- Betts, A.K., R. Desjardins, A.C.M. Beljaars and A. Tawfik (2015), Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front. Earth Sci. 3:13. <u>http://dx.doi.org/10.3389/feart.2015.00013</u>
- <u>http://alanbetts.com/research</u>

Diurnal Climate

- Reduce hourly data to
 - daily means: T_m , RH_m , $OPAQ_m$ etc
 - data at max/min: T_x and T_n
- Diurnal cycle climate
 - DTR = $T_x T_n$
 - $\Delta RH = RH_{tn} RH_{tx}$
- Almost no missing hourly data
 (until recent cutbacks)

Surface Radiation Budget

- $R_n = SW_n + LW_n$
- Define Effective Cloud Albedo

$\begin{aligned} &\mathsf{ECA} = -\mathsf{SWCF}/\mathsf{SW}_{dn}(\mathsf{clear}) \\ &\mathsf{SW}_n = (1 - \alpha_s)(1 - \mathsf{ECA}) \, \mathsf{SW}_{dn}(\mathsf{clear}) \\ &\mathsf{Reflected} \ by \ surface, \ clouds \\ &\mathsf{MODIS} \qquad Calibrate \ Opaque \ Cloud \ data \\ &with \ Baseline \ Surface \\ &\mathsf{Radiation} \ Network \ (BSRN) \end{aligned}$

SW and LW Cloud Forcing BSRN at Bratt's Lake, SK

- "Cloud Forcing"
 - Change from clear-sky (ERA-I)
- Clouds reflect SW
 - SWCF
 - Cool
- Clouds trap LW
 - LWCF
 - Warms
- Sum is CF
- Surface albedo reduces SW
 - Net is CF_n
 - Add reflective snow, and CF_n goes +ve

(Betts et al. 2015)

Use BSRN data to "calibrate" opaque/reflective Cloud

- Daily mean opaque cloud OPAQ_m
- LW cools but clouds reduce cooling
- Net LW: LW_n
 - T>0: depends on RH as well
 - T<0: depends on T and TCWV
- Regression gives LW_n to $\pm 8W/m^2$ if $T_m > 0$ ($R^2=0.91$)

(Betts et al. 2015)

DTR to LW_n: RH and Wind

Summer JJA: 54000 days

- DTR depends *linearly* on LW_n [Betts, 2004, 2006]
 - cooling from afternoon T_x to sunrise T_n
- Increasing wind reduces DTR
 - $-T_x$ falls and T_n increases

Betts et al. 2015

Warm and Cold Seasons

- Unstable BL: SWCF
- Clouds at LCL
 - reflecting sunlight

- Stable BL: LWCF
- Snow
 - reflecting sunlight

- 250,000 days (Prairies: 650 station-years: 1953-2011)
- Freezing point of water changes everything
- Cold <0°C: Snow: Surface cools radiatively, clouds 'blanket'
 - <u>stable boundary layer</u>
- Transition: >0°C: Snow; <0°C: No Snow: near freezing
- Warm >0°C: No Snow: Surface solar heating, clouds reflect
 - <u>Daytime unstable boundary layer</u>

Freezing point of water changes everything

Cold <0°C: Snow

Transition

Warm >0°C: No Snow:

Afternoon LCL is Cloud-base

- At T_x
- Lowest cloudbase (ceilometer)
- LCL (surface)
- Coupled convective boundary layer (CBL)

Winter Ice and Snow

Snowfall and Snowmelt

- Temperature falls 10°C with first snowfall
- And rises again with snowmelt
- Fast transitions in 'local climate': a 'climate switch'
 - Snow reflects sunlight
 - Reduces evaporation and water vapor greenhouse

Mid-Nov. Snow Transition (Cloud partition)

- Ahead of snow Transition
 - Warm >0°C: No Snow Transition
- Time sequence shows the three regimes

After Snow Cold <0°C: Snow

More snow cover - Colder temperatures

Betts et al. 2014a

Warm Season Climate: T>0°C (No snow: May – October)

- Hydrometeorology
 - with Precipitation and Radiation
 - Diurnal cycle of T and RH
- Daily timescale is radiation driven
 Night LW_n; day ECA (and EF)
- Monthly timescale: Fully coupled

DTR to LW_n and ECA

Summer, JJA: 54000 days

- **DTR depends** <u>linearly</u> on LW_n (daily $R^2 = 0.61$) – cooling from afternoon T_x to sunrise T_n
- DTR depends on ECA and RH_m
 - RH_m is 'climate response' to energy partition by soil moisture

Betts et al. 2015

Monthly timescale: Regression

δDTR = K + A* δPrecip(Mo-2) + B * δPrecip(Mo-1) + C * δPrecip + D * δOpaqueCloud
(Month-2)(Month-1)(Month)(Month-2)(Month-1)(Month)(Month)

δDTR anomalies

Month	К	A (Mo-2)	B(Mo-1)	С (Мо)	D (Mo)	R ²	R ²	R ²
						All	Precip	Cloud
May	0±0.8		-0.37±0.05	-0.37±0.04	-1.10±0.05	0.73	0.41	0.66
Jun	0±0.7		-0.30±0.03	-0.32±0.02	-0.97±0.04	0.69	0.42	0.52
July	0±0.7	-0.20±0.03	-0.25±0.02	-0.33±0.03	-1.10±0.05	0.67	0.42	0.48
Aug	0±0.7	<u>-0.07±0.02</u>	<u>-0.21±0.03</u>	<u>-0.40±0.03</u>	<u>-1.24±0.04</u>	<u>0.79</u>	<u>0.46</u>	<u>0.71</u>
Sept	0±0.8		-0.22±0.03	-0.49±0.04	-1.27±0.04	0.82	0.43	0.75
Oct	0±0.8		-0.27±0.03	-0.70±0.07	-1.33±0.04	0.77	0.37	0.70

Betts et al. 2014b

Monthly timescale: Regression

Afternoon δRH_{tx} anomalies

Month	K	A (Mo-2)	B(Mo-1)	C (Mo)	D (Mo)	R ²	R ²	R ²
						All	Precip	Cloud
May	0±3.6	1.30±0.38	1.47±0.22	2.07±0.17	4.75±0.20	0.72	0.46	0.62
Jun	0±3.6	0.69±0.23	1.26±0.15	1.96±0.12	4.36±0.22	0.68	0.47	0.48
July	0±4.1	0.84±0.18	1.71±0.12	1.81±0.17	4.40±0.30	0.59	0.43	0.33
Aug	0±3.6	<u>0.66±0.11</u>	<u>1.23±0.13</u>	<u>2.42±0.16</u>	<u>4.08±0.20</u>	<u>0.73</u>	<u>0.53</u>	<u>0.56</u>
Sept	0±3.5		1.40±0.13	2.10±0.18	4.35±0.16	0.75	0.45	0.63
Oct	0±4.3		1.28±0.19	5.02±0.39	4.58±0.23	0.67	0.44	0.53

Betts et al. 2014b

Change in Cropping (SK)

- Ecodistrict mean for 50-km around station
- Saskatchewan:
 - 25% drop in 'SummerFallow'
- Split at 1991 has summer climate changed?

Betts et al. 2013b

Three Station Mean in SK

Growing season

(winter warmer)

- T_{max} cooler; RH moister
- DTR and ΔRH seasonal transitions

Impact on Convective Instability

Betts et al. 2013b

Warm & Cold Climates: T><0°C

- Warm >0°C: Clouds reflect sunlight
- Cold <0°C: Clouds are greenhouse & snow reflects sun
- T falls 10°C with snow <u>Fast climate transition</u>

More snow cover - Colder temperatures

 \bigcirc

Betts et al. 2014a

Summary

- Distinct warm and cold season states
 - Sharp transitions with snow cover: $\alpha_s = 0.7$
 - Snow cover is a <u>"climate switch"</u>
 - From 'Warm when clear', convective boundary layer
 - To 'Cold when clear', with stable boundary layer
- Increased transpiration changed climate
 - Cools and moistens summer climate
 - Lowers cloud-base and increases θ_{E}
 - (While winter climate has warmed)

Papers at http://alanbetts.com

Conclusions

- Hydrometeorology <u>requires</u>
 - Precipitation and cloud/radiation
 - Cloud dominates on daily timescale
 - Both affect monthly to seasonal anomalies
 - Temperature and RH
 - Giving LCL and θ_E : feedback to Precip
- Canadian Prairie data
 - Describe fully coupled Land-Atmos system
 - Invaluable for model evaluation
- <u>http://alanbetts.com/</u> (5 papers)

MJJA Growing Season $\delta Y_{\sigma} = K_{\sigma} + B_{\sigma}^* \delta Precip(AMJJA)_{\sigma} + C_{\sigma}^* \delta OpaqueCloud_{\sigma}$

Variable: δY_{σ}	K _σ	Β _σ	C _σ	R^2_{σ}	σ(δΥ)
δΤ _{xσ}	0±0.7	-0.33±0.03	-0.52±0.03	0.52	1.11
δT _{mσ}	0±0.8	-0.21±0.05	-0.50±0.07	0.38	0.88
δDTR _σ	0±0.6	-0.55±0.03	-0.39±0.03	0.62	0.83
δRH _{txσ}	0±0.6	0.56±0.03	0.35±0.03	0.60	4.35
δRH _{mσ}	0±0.7	0.51±0.03	0.33±0.03	0.50	4.61
δP _{LCLtxσ}	0±0.6	-0.56±0.03	-0.37±0.03	0.61	18.6
δQ _{txσ}	0±0.9	0.50±0.04	0.03±0.04	0.26	0.58
δθ _{Etxσ}	0±1.0	0.22±0.04	-0.31±0.04	0.09	1.95

Diurnal range of Q

