Seasonal Climate Transitions in New England

Dr. Alan K. Betts

Atmospheric Research, Pittsford, VT 05763

http://alanbetts.com

25th Conference on Hydrology

AMS, Seattle, WA

"Communicating Weather & Climate"

January 24, 2011

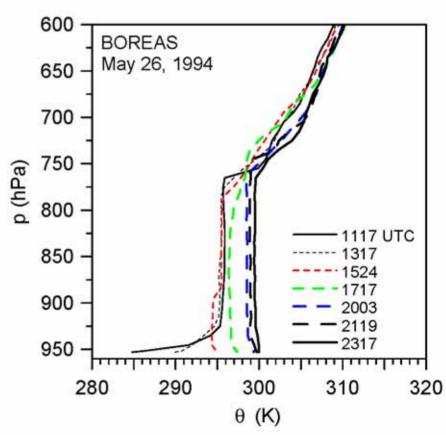
How can we explain climate processes to the Public?

- Pictorial strategy, using 'seasonal climate transitions' that are familiar
- Seasonal climate transitions
- Spring, Summer, Autumn and Winter
- Familiar to farmers, less so to forecasters, who see the synoptic weather, more than the climate transitions!
- 'HydroEcology & climate'

Two Spring transitions

- 1) Warm dry week to ten days in Spring, after snowmelt, past the equinox
- 2) Followed by drop of temperature of 3-5C with leafout – in a wave up the eastern seaboard
- Many key climate processes:
- Seasonal lags-melt of frozen soils
- Vegetation-evaporation coupling
- Latent heat of evaporation reduces surface T
- Evaporation-RH-cloud-WV greenhouse
- RH-LW_{net}-diurnal temperature range-frost

Spring transition-1 4/15/2008


- Weather:
 Sunny, dry week
- Climate:
 After snowmelt
 before leaf-out
 'warm & dry'
 (little evaporation).
 Large diurnal temp.
 range. Frost likely.
- Climate change: 'Spring' earlier than 30 years ago

Pittsford, Vermont

More extreme at boreal latitudes

- Mid-May frozen roots; conifer canopy at 23°C
- Surface pools everywhere but no evaporation and afternoon RH = 27%
- Cloud-base 2000m
- A 'green desert'
- too cold to evaporate
- Longer seasonal lag than New England

Spring transition-2 5/15/2010

- Weather:
 - Cooler, humid, cloudy week
- Climate:
 After leaf-out, large evaporation, temp. falls 3-5C. Low cloud-base. Smaller diurnal temp. range.
 Frost unlikely.
- Climate change: 'Leaf-out' earlier than 30 years ago

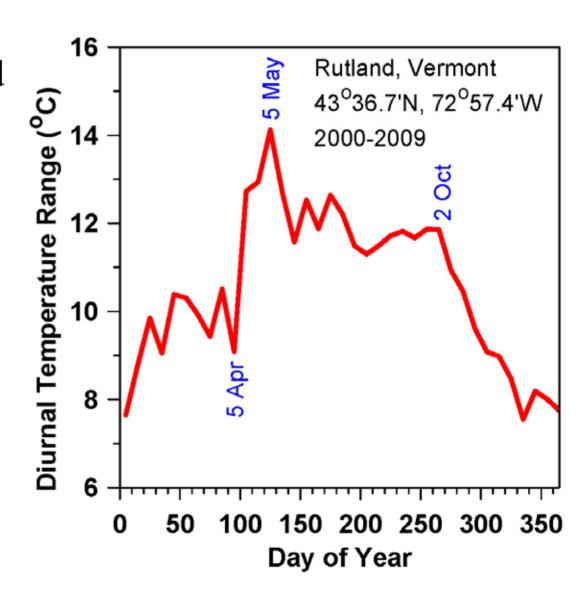
Pittsford, Vermont

Are spring transitions correct?

- 15 April after melt
- Low transpiration
- Dry atmosphere
- Larger DTR

15 May after leafout

Large transpiration


Moist atmos., clouds

DTR reduced

Mean Diurnal Temperature Range

- Water vapor & cloud greenhouse effect linked to LW_{dn}, LW_{net} and DTR
- Coupled to transpiration

[Betts, JGR, 2006]

Summer transitions

- Summer dry-down; soil moisture falls, evaporation falls, BL drier, θ_E falls, no precipitation
- May lock into a dry spell, a 'drought' till upset by strong weather system
- But it can go either way...
- 2008 and 2009, we had wet VT summers with + evaporation-precipitation feedback
- 2010 we had a summer dry-down

Wet summers

- Both 2008 and 2009 were wet
- Direct fast evaporation off wet canopies
- Positive evaporation-precipitation feedback

Summer dry-down

- Wet in spring
- Soil moisture falls: summer dry-down
- Low RH & no rain

Hay dries fast!

Fall transition

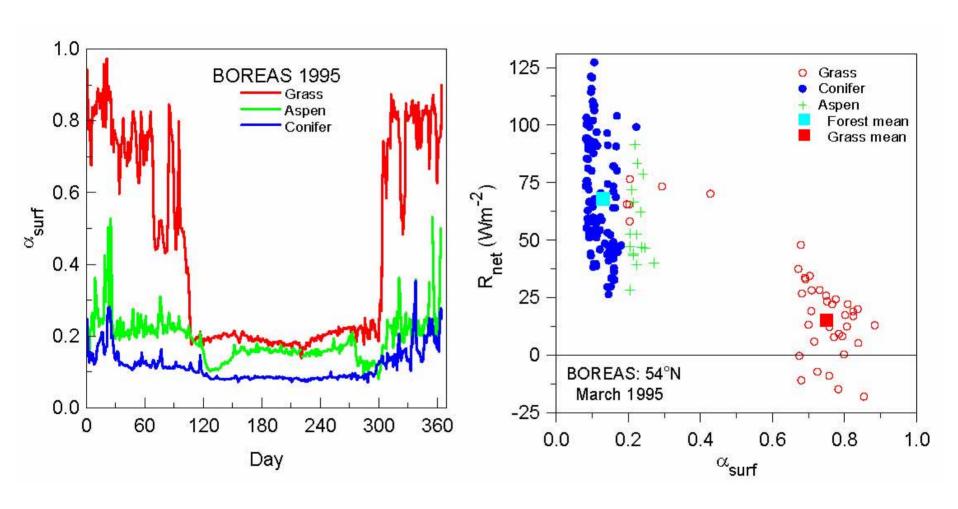
- Mirror of Spring transition (2)
- Vegetation tries to postpone first killing frost
- By October 1, sun is past equinox and sinking
- Deciduous trees still evaporating, BL moist, BL cloud
- WV & cloud greenhouse reduces outgoing LW, reduces drop of T at night and prevents frost
- Till one night, dry air advection from north gives first frost, vegetation shuts down, frosts become frequent
- Dry atmos., large $LW_{net} \rightarrow large diurnal cycle$
- Warm days and cool nights: 'Indian summer'
- Didn't happen in 2009 wet soils and rain!

Fall colors

- Fall color after killing frost
- If delayed then less color as leaves die slowly
- Note blue sky –
 dry atmosphere
- First frost in VT getting later

Energetics of ground & snow melt

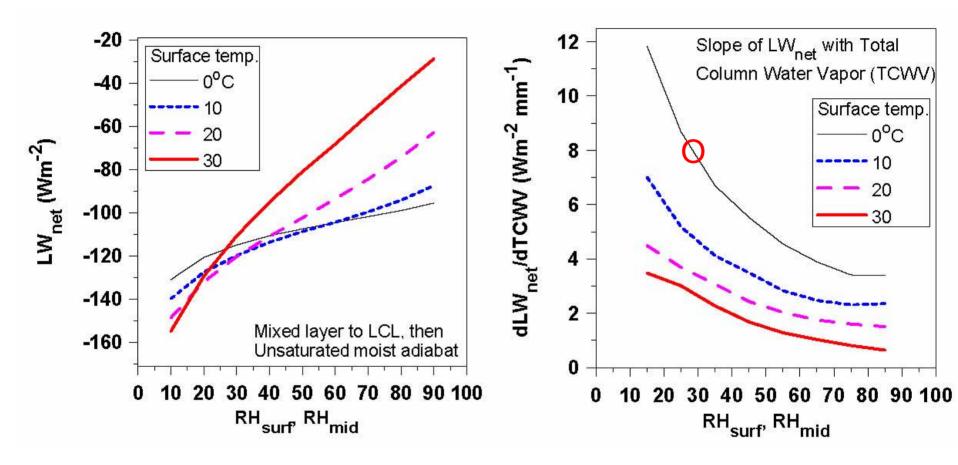
- 1 meter frozen soil = 300mm water
- 1 meter snow = 100mm water
- 25 Wm⁻² melts 6.5 mm/day
- Soil phase change gives 'sink' of 25 Wm⁻² for 45 days in spring and smaller 'source' over longer time period in fall
- As climate warms, frozen period shrinks at mid- and high latitudes *Model must be accurate as freezing point matters!*


Winter transition: T falls sharply

- Snow reflects sunlight
- Sublimation low
- Dry atmosphere
- Large outgoing LW_{net}
 (reduced water vapor
 greenhouse)
- Snow uncouples ground
- Temperature falls

Note trees shade snow: low forest albedo

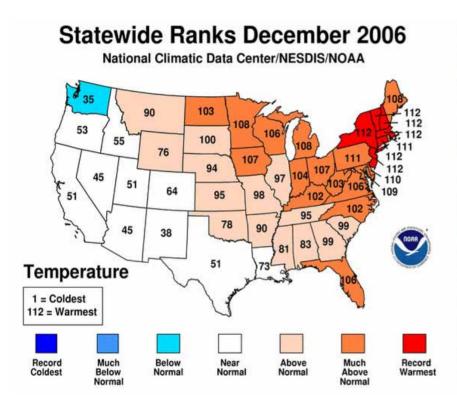
Boreal forest example


• High albedo in March: $R_{net} \approx zero$

Rough energetics: snow-on-grass

- Winter $SW_{down}(clear) \approx 130 \text{ Wm}^{-2} \text{ (Vermont in Feb.)}$
- 10cm fresh snow changes albedo from 0.15 to 0.75 & drops SW_{net} from 110 to 30 Wm^{-2}
- Residual 30 Wm⁻² sublimes 1cm snow/day [1mm ice]
- Snow loss increases as snow ages
 - snow lasts ≈ 5 days,
 - reducing solar heating to \approx zero
- SW_{net} impact = -80 Wm⁻² while snow lasts

LW impact of water vapor



• When cold, removing 1mm water vapor in 30% RH atmosphere increases outgoing LW_{net} by 8 Wm⁻²

What are key observables?

- Surface albedo, effective cloud albedo
- Frozen ground, snow cover, frozen lakes
 - total frozen water and SW reflection
- Seasonal transitions are good integrated markers of climate system: ice and vegetation
- Surface RH and LCL: linked to availability of water and vegetation
- DTR coupled to surface LW_{net} coupled to WV and cloud greenhouse effect

After warmest December on record: transition delayed into mid-January.

Gardening in Pittsford, VT Jan 7, 2007

Brussel sprouts can now survive some VT winters [protected by leaves & snow]

Picked February 10, 2008, Pittsford, VT

Conclusions

- Understanding seasonal climate transitions helps us understand key climate processes
- These can be seen locally and understood in terms of personal experience
- Easier then to grasp some of the water cycle processes that are accelerating the warming of northern latitudes
- Cold season is shrinking 7 days/decade in VT