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Abstract  
 

Analysis of the hourly Canadian Prairie data for the past 60 years 

has transformed our quantitative understanding of land–

atmosphere–cloud coupling. The key reason is that trained 

observers made hourly estimates of the opaque cloud fraction 

that obscures the sun, moon, or stars, following the same protocol 

for 60 years at all stations. These 24 daily estimates of opaque 

cloud data are of sufficient quality such that they can be 

calibrated against Baseline Surface Radiation Network data to 

yield the climatology of the daily short-wave, long-wave, and 

total cloud forcing (SWCF, LWCF and CF, respectively). This 

key radiative forcing has not been available previously for 

climate datasets. Net cloud radiative forcing changes sign from 

negative in the warm season, to positive in the cold season, when 

reflective snow reduces the negative SWCF below the positive 

LWCF. This in turn leads to a large climate discontinuity with 

snow cover, with a systematic cooling of 10 °C or more with 

snow cover. In addition, snow cover transforms the coupling 
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between cloud cover and the diurnal range of temperature. In the 

warm season, maximum temperature increases with decreasing 

cloud, while minimum temperature barely changes; while in the 

cold season with snow cover, maximum temperature decreases 

with decreasing cloud, and minimum temperature decreases even 

more. In the warm season, the diurnal ranges of temperature, 

relative humidity, equivalent potential temperature, and the 

pressure height of the lifting condensation level are all tightly 

coupled to the opaque cloud cover. Given over 600 station-years 

of hourly data, we are able to extract, perhaps for the first time, 

the coupling between the cloud forcing and the warm season 

imbalance of the diurnal cycle, which changes monotonically 

from a warming and drying under clear skies to a cooling and 

moistening under cloudy skies with precipitation. Because we 

have the daily cloud radiative forcing, which is large, we are able 

to show that the memory of water storage anomalies, from 

precipitation and the snowpack, goes back many months. The 

spring climatology shows the memory of snowfall back through 

the entire winter, and the memory in summer, goes back to the 

months of snowmelt. Lagged precipitation anomalies modify the 

thermodynamic coupling of the diurnal cycle to the cloud 

forcing, and shift the diurnal cycle of the mixing ratio, which has 

a double peak. The seasonal extraction of the surface total water 

storage is a large damping of the interannual variability of 

precipitation anomalies in the growing season. The large land-use 

change from summer fallow to intensive cropping, which peaked 

in the early 1990s, has led to a coupled climate response that has 

cooled and moistened the growing season, lowering cloud-base, 

increasing equivalent potential temperature, and increasing 

precipitation. We show a simplified energy balance of the 

Prairies during the growing season, and its dependence on 

reflective cloud. 
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1. Introduction  
 

Understanding land–atmosphere–climate coupling is challenging, 

because so many coupled processes are involved: soil 

temperature and moisture, vegetation types, properties and 

coverage, near-surface temperature and humidity, the 

atmospheric boundary layer, the shallow and deep cloud fields 

which determine the surface radiation balance and surface 

precipitation, and the soil hydraulic properties that determine the 

surface and deep runoff, to name only the local components. In 

the cold season, precipitation falls as snow, and the surface 

accumulation increases the albedo, and stores water until 

snowpack melt. 

 

The coupling between the energy and water cycles at the land 

surface is central to hydrometeorology, and important to weather 

forecasts on timescales from days to seasons. Earlier reviews 

[1,2] looked at hydrometeorology from the global modeling 

perspective using model reanalysis data, which showed how net 

long-wave and short-wave radiation, cloud cover, surface fluxes, 

diurnal temperature range, soil moisture, and cloud-base height 

were coupled on daily timescales over river basins [3]. On daily 

timescales, the land–atmosphere system is fully coupled, so that 

errors in the model representation of processes in the soil, 

vegetation, boundary layer, and cloud fields can rapidly bias a 

model forecast. Nonetheless, this model perspective was a strong 

motivation for our analyses of the Canadian Prairie data, and the 

search for a quantitative description of the fully coupled observed 

system. 

 

Historically, many climate and hydrometeorology studies have 

been largely based on precipitation, temperature, and humidity, 

for which long-term records are available [4–6]. However, the 

diurnal cycle is driven primarily by the surface radiation balance, 

which depends critically on the daily cloud fields, which are 

generally unknown in climate records, until satellite-based 

estimates became available. We cannot study the fully coupled 

nature of the land–atmosphere–climate system without the 

surface radiation budget. 
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The Canadian Prairie data is, however, an exception, because 

observers, typically at most major airports, were trained to 

estimate hourly the opaque cloud fraction in tenths, by cloud 

level and in total. The definition of opaque cloud is ―opaque to 

the sun, moon, or stars‖; and this protocol has been followed by 

trained observers hourly for 60 years across the Prairies. With 24 

observations per day (almost none are missing), we have 

representative estimates of the fraction of the daytime short-wave 

clear-sky (SWCS) flux reaching the surface, and the fraction of 

the sky that is opaque to outgoing long-wave (LW) radiation for 

over 600 station-years of data. Because there are 17 years of 

Baseline Surface Radiation Network (BSRN) data just 25 km 

south of Regina, SK, we were able to calibrate the opaque cloud 

data in terms of the LW and SW cloud forcing (Section 3.3). This 

is transformative, as it meant that we were able to determine 

quantitatively the climate coupling between the cloud radiative 

forcing, and the diurnal and seasonal cycle. In addition, simply 

because we can separate the large radiative impact of clouds 

from the impact of precipitation, we can better quantify the 

hydrometeorological processes that couple the energy and water 

cycle, and observe the long-term memory of precipitation 

anomalies. In recent years, data from the Gravity Recovery and 

Climate Experiment (GRACE) [7,8] give estimates of the 

seasonal drawdown of total water storage. Canadian archives also 

record agricultural crops grown on the Prairies back to 1955, so 

we could assess the large climate impact of the shift away from 

summer fallowing to continuous cropping. 

 

This paper is not a conventional review of the literature on land–

atmosphere–climate coupling. Instead, it is a synthesis of our key 

conclusions from a series of Prairie data analysis papers [9–16]. 

Readers interested in more details, or in the evolution of our 

thinking, can refer back to these original papers. It is remarkable 

that the long-term Prairie climate dataset, with better cloud 

observations, have taken our understanding of land–atmosphere–

climate coupling to a new level. In retrospect, much of our 

analysis could have been done two decades ago, but the data was 

not widely accessible. 
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Section 2 discusses the Prairie data and our analysis methods. 

Section 3 outlines how the climate is coupled to opaque cloud 

and snow cover on daily timescales, and shows the difference in 

cloud forcing between warm and cold season with snow. Section 

4 looks at the long-term memory of precipitation anomalies, both 

using multiple regression for the cold and warm season memory, 

and the dependence of the diurnal coupling on opaque cloud and 

precipitation anomalies. Section 5 looks at how the seasonal 

extraction of the surface total water storage dampens the 

interannual variability of precipitation anomalies in the growing 

season, and how the large land-use change from summer 

fallowing to intensive cropping has led to a coupled climate 

response. Finally, we return to reanalysis data to show how the 

growing season surface and top-of-atmosphere (TOA) budgets 

change with cloud cover. Section 6 summarizes our conclusions. 

 

2. Methods  
2.1. Prairie Station Locations  
 

Figure 1 shows the location of the 15 Prairie stations used in our 

analyses. Most of the stations are in the agricultural region, 

except The Pas. Table 1 lists the station locations and elevation, 

and the two letter code is used to identify stations in the figures 

and text. These have an hourly pressure, temperature, relative 

humidity, wind speed and direction, opaque cloud, and derived 

radiation, starting in 1953, for all stations, except RG, and MJ, 

which start in 1954, and ED, which starts in 1961. We accessed 

the data through June 2011. The hours of missing data are 

remarkably small. For key stations, such as Calgary, Regina and 

Winnipeg, more than 99.9% of the days have no missing hours in 

the first 40 years. In more recent years since 1994, the number of 

days with less than 23 h of data is typically less than 1%. A few 

stations (PS in 1992; MJ in 1998; LE and MH in 2006) shifted to 

daytime-only observation in recent years, because of reduced 

staffing. The stations also have daily precipitation and snow 

depth (except for PO), although the last year with complete 

precipitation data was 1994 for SW, 2005 for LE and MH, 2007 

for WI, 2008 for RG, and 2009 for SK. The snow depth data 

begins in 1955, and ends in 1994 for SW, 1997 for MJ, 2002 for 

LE, 2003 for WI, 2005 for RG and SK, 2006 for ES, GP, MH, 
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PA, RD, RG, and TP, and 2010 for ED. This synthesis paper 

extracts significant results from many analyses [9–16], which use 

different subsets of the data, ranging from all station-years with 

snow depth (e.g., Section 3.1) to selected representative stations, 

which we will identify in the text. 

 

 
 
Figure 1: Climate station locations, Canadian ecozones, regional zones, 

agricultural regions, and boreal forest (adapted from [14]). 
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Table 1: Climate stations with locations and elevation. 

 
Station Name 

(Code) 

Station 

ID 

Province Latitude Longitude Elevation 

(m) 

Red Deer 

(RD) 

3025480 Alberta 52.18 −113.62 905 

Calgary (CA) 3031093 Alberta 51.11 −114.02 1084 

Edmonton 

(ED) 

3012202 Alberta 53.57 −113.52 671 

Lethbridge 

(LE) 

3033880 Alberta 49.63 −112.80 929 

Medicine Hat 

(MH) 

3034480 Alberta 50.02 −110.72 717 

Grande Prairie 

(GP) 

3072920 Alberta 55.18 −118.89 669 

Regina (RG) 4016560 Saskatchewan 50.43 −104.67 578 

Moose Jaw 

(MJ) 

4015320 Saskatchewan 50.33 −105.55 577 

Estevan (ES) 4012400 Saskatchewan 49.22 −102.97 581 

Swift Current 

(SW) 

4028040 Saskatchewan 50.3 −107.68 817 

Prince Albert 

(PA) 

4056240 Saskatchewan 53.22 −105.67 428 

Saskatoon 

(SK) 

4057120 Saskatchewan 52.17 −106.72 504 

Portage-

Southport 

(PS) 

5012320 Manitoba 49.9 −98.27 270 

Winnipeg 

(WI) 

5023222 Manitoba 49.82 −97.23 239 

The Pas (TP) 5052880 Manitoba 53.97 −101.1 270 

 

2.2. Diurnal Range Definition  
 

The diurnal range of temperature, DTR, is defined as the 

difference between the maximum temperature, Tx, and the 

minimum temperature, Tn: 

 

DTR = Tx − Tn        (1a) 

Similarly for relative humidity, RH, (and other variables), we 

define the diurnal range, DRH, as the difference between the 

maximum, RHx, and the minimum, RHn: 
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DRH = RHx − RHn                (1b)  

 

In our early papers [9–13] we generally reduced the hourly data 

to daily means, Tm, RHm, and recorded Tx, Tn, and DTR. The 

difference in relative humidity (RH), DRH, between Tn and Tx 

was used as an approximation of the diurnal range. However, 

there has been considerable discussion in recent years about the 

difference between DTR, Tx, and Tn derived from the monthly 

means of hourly data, and the conventional monthly mean of 

daily values of DTR, Tx, and Tn [12,17–19]. 

 

We explored this issue [14], using stratifications by month and 

by opaque cloud cover, and found systematic biases, especially in 

winter, and even in summer under cloudy conditions. We 

concluded that the radiatively-forced diurnal cycle, that is, the 

lagged response to the diurnally varying radiation field, which is 

dependent on opaque cloud cover, is represented best by first 

binning the hourly data for groups of many days, and then by 

determining the diurnal ranges from the composites. Specifically, 

we found that this radiatively-forced diurnal cycle has a smaller 

amplitude than the corresponding average of the daily ranges. 

The reason is transparent. Without an advection of temperature, 

Tn is near sunrise and Tx is in the mid-afternoon, but advection 

can shift the daily minimum temperature away from the time of 

sunrise to a lower value than the temperature at sunrise, and 

similarly, advection can shift the daily maximum temperature 

away from the mid-afternoon to a higher value than the mid-

afternoon temperature. Either will give a larger diurnal range. 

 

Our dataset has around 240,000 days, so coarse stratifications 

may have 2000 days in each bin, and detailed sub-stratifications 

typically have >200 days in each bin. This means that the 

radiatively-forced diurnal cycle emerges from composites of the 

hourly data, since the advection of temperature and humidity 

varies from day to day. This leads to a fundamental quantitative 

improvement in our understanding of the coupling between the 

diurnal cycle and the opaque cloud cover that determines the 

cloud radiative forcing. 
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We also derived from T, RH, and surface pressure, PS, the other 

thermodynamic variables: the mixing ratio (Q), the potential 

temperature (θ), the equivalent potential temperature (θE), and the 

saturation pressure (p*) at the lifting condensation level (LCL). 

We defined the pressure height to the LCL, PLCL = PS − p* [2], 

which in the warm season, is often an indicator of the height of 

cloud base [9]. We calculated the diurnal ranges that are related 

to moist convective processes: 

 

DθE = θEx − θEn                          (2a) 

 

 

DPLCL = PLCLx − PLCLn            (2b)  

 

2.3. Opaque Cloud Bins  
 

Since opaque cloud reflects the solar flux and traps the outgoing 

long-wave, we used the daily mean of the hourly opaque cloud 

measurements to stratify the daily mean data, and the diurnal 

ranges of temperature and humidity and derived variables (see 

Section 3). In fact, we computed two daily averages from the all-

sky opaque cloud cover estimates to use for stratification. The 

first is the simple mean of the 24 hourly values, OPAQm. The 

second, OPAQSW, is a mean of the hourly opaque cloud values 

during daylight hours, weighted by a fit to the downward clear 

sky flux derived from the reanalysis known as ERA-Interim 

(details in [13]). 

 

2.4. Cloud Radiative Forcing  
 

In the short-wave radiation budget, we can define an effective 

cloud albedo (ECA) and the short-wave cloud forcing (SWCF) in 

terms of a downwelling SW clear-sky flux, SWCSdn, based on a 

fit to the clear-sky fluxes from the nearest grid-point of the 

reanalysis ERA-Interim [13,20]: 

 

ECA = 1 − SWdn/SWCSdn    (3) 

 

 

 

SWCF = SWCSdn − SWdn = −ECA * SWCSdn    (4)  
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The dimensionless ECA, with a range from 0 to 1, is a useful 

measure of the impact of the reflective cloud field on the surface 

shortwave radiation budget [2,3]. SWCF becomes increasingly 

negative as ECA increases, while SWCSdn has a large increase 

from the winter to the summer solstice. 

 

Similarly, we can define a long-wave cloud forcing (LWCF) in 

terms of a downwelling clear-sky flux LWCSdn, also from ERA-

Interim, as: 

 

LWCF = LWdn − LWCSdn        (5)  

 

LWCSdn is the smaller term, and LWdn increases with increasing 

cloud cover, so that LWCF is positive. 

The total cloud forcing (CF) of the downwelling radiative fluxes 

is the sum: 

 

CF = SWCF + LWCF                (6a)  

 

In the warm season, the SWCF dominates, and CF is negative. 

The net cloud forcing can be defined as: 

 

CFnet = (1 − αs) SWCF + LWCF      (6b)  

 

where the mean surface albedo, defined as: 

 

αs = SWdn/SWup                                            (7) 

  

ranges for Saskatchewan from about 0.18 in summer to 0.73 in 

winter with snow cover [11,12]. When there is a snow cover, the 

positive LWCF dominates, because the lower solar elevation and 

larger surface albedo greatly reduce the net SWCF. 

We computed the net LW flux: 

 

LWn = LWdn − LWup                              (8)  

 

using observations for LWdn, and estimating LWup from the daily 

mean air temperature, Tm (°C), from: 

 

LWup = ε ζ Tk
4                         

(9)  
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with Tk (K) = Tm + 273.15, ζ = 5.67 × 10
−8

 (W m
−2

 K
−4

) and the 

emissivity ε set to 1. 

 

3. Climate Coupling to Opaque Cloud and Snow 

Cover  
 

This section will present several topics: the monthly diurnal cycle 

with and without snow cover, the relationship between snow 

cover, opaque cloud, and cloud radiative forcing, the climate 

impact of snow cover, the coupling between opaque cloud and 

warm season diurnal thermodynamic ranges, and the dependence 

of the 24 hr imbalances of the diurnal cycle on opaque cloud 

cover. 

 

3.1. Forcing of Diurnal Cycle by Cloud and Snow Cover  
 

We start with the dependence of the monthly diurnal cycle of 

temperature on cloud and snow cover [14]. Taking the data from 

all stations-years in Table 1 that have snow depth data, we first 

stratified by temperature and snow cover: selecting the warm 

group of days with Tm > 0 °C and no snow cover (141,160 days), 

and the cold group of days with Tm < 0°C with surface snow 

cover (74,260 days). Here, we exclude the much smaller mixed 

group of days, above freezing with snow cover and below 

freezing without snow (see [14]). 

 

Figure 2 shows the mean diurnal cycle of temperature by month, 

stratified into 10 bins of daily mean opaque cloud, OPAQm. In 

the warm season from May to October, we see a steep increase of 

maximum temperature Tx and diurnal temperature range DTR 

with decreasing opaque cloud, and a rather small fall of 

minimum temperature in summer. The changing day-length is 

clearly visible by September and October. In sharp contrast, in 

the cold season with snow, from December to February, Tx 

decreases with decreasing opaque cloud, and Tn decreases even 

more steeply to its lowest minimum at sunrise under clear skies. 

Beside the September and December plots, we show OPAQm 

legends in ascending and descending order to illustrate this 
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reversal of the diurnal cycle coupling to opaque cloud between 

warm and cold seasons. 

 

For the transition months, November, March, and April between 

warm and cold seasons, both regimes with and without snow 

cover are well-represented; it is clear that the distributions are 

non-overlapping. Note that the temperature range shown for the 

transition months is broader (32 K) than for the single months 

with a single regime (21 K). This is a large dataset with about 

20,000 days per month, so that each cloud bin has typically about 

2000 days in summer and winter. For the transition months, 

where the data is also split unevenly, the number in each bin 

varies from about 200 to 1500. 

 

It is clear that snow cover has two large climate impacts. First, it 

cools the mean climate, represented by Tm, by about 10 °C; and 

second, it reverses the sign of the coupling to opaque cloud 

cover. Snow cover acts as a climate switch between non-

overlapping regimes [11,14]. We will explore the climate impact 

of snow cover further in Section 3.4, but first we will show the 

seasonal impact on the cloud radiative forcing. 

 

3.2. Change of Cloud Forcing between Warn and Cold 

Season  
 

The dramatic differences in the diurnal cycles of temperature 

shown in Figure 2 are related to the reversal of the sign of the net 

cloud forcing between the warm season and the cold season with 

snow cover. We computed this using Equations (3) to (7), and 

data from the Baseline Surface Radiation Network (BSRN) 

Prairie site at Bratt’s Lake, Saskatchewan at 50.204° N, 104.713° 

W, elevation 588 m [13]. We have 17 years of the downwelling 

fluxes, SWdn and LWdn, at Bratt’s Lake, which we first averaged 

from 1-min data to hourly means, and then to daily means. 

 

Figure 3 shows that CFnet from Equation (6b) reverses the sign 

from increasing negative with cloud cover in the warm season, to 

increasing positive in the cold season with cloud cover. This is 

consistent with the daily mean temperature response seen in 

Figure 2 to the changing opaque cloud cover. 
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Figure 2: Monthly diurnal cycles for cold-snow and warm-no-snow classes, 

stratified by opaque cloud (adapted from [14]). 
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Figure 3: Mean annual cycle of CFnet, stratified by effective cloud albedo 

(ECA) (adapted from [13]). 

 

3.3. Relationship between Opaque Cloud and Cloud 

Radiative Forcing  
 

We then binned the BSRN data from Bratt’s Lake for the 

downward SW and LW fluxes using the opaque cloud 

measurements at Regina, 25 km to the north, simply defining the 

warm season as days with Tm > 0°C and the cold season as days 

with Tm < 0°C , because we have no snow cover data for Bratt’s 

Lake. For the SW comparison, we compared the daytime 

weighted opaque cloud, OPAQSW (see Section 2.3) with ECA 

from Equation (3). For the LW comparison, we compared the 24 

hr mean OPAQm with LWn computed from Equation (8). 

 

Figure 4 (left) shows the relationship between ECA and 

OPAQSW for the warm season above freezing, and the cold 

season below freezing. ECA increases more steeply with 

increasing opaque cloud in the warm season than in the cold 

season. We show the mean and standard error of the binned data, 

and quadratic regression fits to the daily data, which could be 

used to convert opaque cloud to ECA. For the warm season, the 

fit is (R
2
 = 0.87): 
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ECA = 0.06(±0.08) + 0.02(±0.02) OPAQSW + 0.65(±0.02) 

OPAQSW
2                                                                                             

(10a) 

 

For the cold season, the fit is (R
2
 = 0.71): 

 

ECA = 0.07(±0.11) + 0.08(±0.03) OPAQSW + 0.37 (±0.03) 

OPAQSW
2                                                                                             

(10b)
 

 

The uncertainty in ECA on a daily basis is of the order of ±0.08 

in the warm season and ±0.11 in the cold season. The standard 

errors (SE) shown for the climatological fits are much smaller, 

because they are reduced by the large number of days. 

 

 
 
Figure 4: Relationship between opaque cloud at Regina and Bratt’s Lake ECA 

(left), opaque cloud, and LWn stratified by RHm in the warm season (middle), 

and (right) LWn stratified by Tm in the cold season (adapted from [13]). 

 

Figure 4 (middle) shows the dependence of LWn on opaque cloud 

for days above freezing (3245 days) for three bins of daily mean 

RHm (<60, 60–75, >75%). The outgoing LWn flux for the same 

cloud cover increases as RH falls. The temperature dependence is 

very small when Tm > 0°C (not shown). The right panel shows 

the dependence of LWn on opaque cloud for temperatures below 

freezing (2198 days) for three bins of daily mean Tm (<−20, −20 

to −10, −10 to 0 °C). The outgoing LWn flux now decreases with 

colder temperatures, probably because the surface cools under a 

stable BL in the cold season [13]. 

 

In the warm season, multiple regression of the daily values of 

LWn on quadratic opaque cloud and RHm gives (R
2
 = 0.91): 
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LWn = −128.6(±7.8) + 28.1(±1.8)OPAQm + 44.6(±1.8)OPAQm2 + 

0.49(±0.01)RHm                                                                                                                              (11a) 

 

In the cold season, multiple regression on quadratic opaque 

cloud, Tm and RHm gives (R
2
 = 0.83): 

 

LWn = −112.2(±9.8) + 43.5(±2.8)OPAQm + 26.8(±2.5)OPAQm2 +  

0.29(±0.02)RHm − 1.02(±0.03)Tm      (11b) 

 

3.4. Climate Impact of Snow Cover 
 

Figure 2 shows that the impact of snow cover on the Prairies on 

the diurnal cycle of temperature is very large. The transition 

months show that the cooling with snow cover is large, and show 

a reversal of the response to cloud cover, consistent with the 

reversal of the net cloud forcing between cold and warm seasons 

shown in Figure 3. This section addresses the resulting mean 

climate impact of snow cover. 

 

Figure 5 shows four different analyses of the climate impact of 

snow cover. The top-left is a composite of the six climate stations 

in Saskatchewan for eight days before and after fresh snowfall in 

November, showing a mean of about 270 snowfall events, with a 

mean date of November 15 (adapted from [11]). We see the fall 

of daily mean temperature across the snow event, from near 0 °C 

a week before, to −9.4 ± 0.7 °C for days 2 to 8 afterwards. The 

climate transition from fall to winter often comes abruptly with 

these snow events [11], as the snowpack may not melt till spring. 

Similar composites for individual stations and the means for 

other provinces are shown in [11]. All of these suggest that as the 

albedo of the Prairies changes from about 0.2 with no snow cover 

to above 0.7 with snow cover [11,12], there is a fall of 

temperature of nearly 10 °C, and the reverse change occurs in 

spring with snow melt (see [11]). 

 

The top-right (adapted from [14]) shows the fall of mean daily 

temperature, δTm, with snow cover, derived from Figure 2 by 

calculating the difference of the diurnal composites with and 

without snow for the transition months, November and March, 

for each opaque cloud cover bin. We made a correction of about 
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2 °C, based on the mean seasonal cycle [14], to allow for the fact 

that the mean date of the snow-free composite is about 15 days 

earlier in November, and later in March than the composite with 

snow. The curves are a little noisy, because the independent 

sampling in opaque cloud bins, with and without snow, is far 

from homogeneous, and in these transition months, the number 

of days in each bin ranges widely from 184 to 1869 (not shown). 

Nonetheless, we see a larger degree of cooling as the opaque 

cloud decreases. The climate cooling with snow, averaged across 

all cloud bins (open circles), is −11.8 °C (−10.7 °C) for 

November (March). We also show quadratic fits (dashed) as a 

useful smooth reference for the impact of cloud cover. We note 

that the radiative forcing is stronger in March than November, 

but we cannot assess whether the small difference between the 

November and March curves is significant, given the 

inhomogeneity across the cloud bins. 

 

The bottom-left plot shows the monthly mean temperature across 

the cold season (black line) and the partition into days with snow 

cover (blue) and days with no snow cover (red line) for a single 

station (Lethbridge, Alberta), together with the mean snow depth. 

The difference between the blue and red curves (the magenta 

curve) shows the monthly climate cooling of snow cover with a 

mean value of ΔT = −10.4 ± 0.4 °C. The standard errors shown 

are small because of the large number of days in the 49-year 

record. Other stations show similar plots [15], suggesting that the 

cold season climatology with and without snow (red and blue 

curves) are distinct and non-overlapping. Conventionally, they 

are merged to the black curve, so this can be misleading. 

 

The bottom-right panel shows the mean temperature TM, for 

October to April against the fraction of days with snow cover 

(FDS) for five stations in Alberta, Lethbridge, Medicine Hat, 

Calgary, Red Deer, and Grande Prairie, listed in order of 

increasing latitude (adapted from [11,15]). The line fit shown is 

for 326 years of data, and we show the station means (black 

circles) that lie close to this line fit. Since it is clear that the 

southern three stations (red points) have warmer temperatures 

and lower FDS than the northern two stations, we also computed 

the linear regression slopes for these two groups. 
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All station fit TM = 3.9(±1.2) − 14.6(±0.5) * FDS (R
2 
= 0.79)  

                                                                                                (12a)       

3 southern station fit TM = 3.8(±1.5) − 14.3 (±0.7) * FDS (R
2 

=   

0.73)                                                      (12b) 

 

2 northern station fit TM = 3.2(±1.5) − 13.6(±1.5) * FDS (R
2 
= 

0.48)                       (12c) 

 

These agree within the uncertainty, which increases for fewer 

stations. The corresponding plot for Saskatchewan is similar 

[11]. We conclude that the climate coupling between the fraction 

of days with snow cover and the mean cool season temperature is 

a robust feature of the Prairie landscape. The shift of the station 

means with increasing latitude suggests that reduced insolation is 

also playing a tightly coupled role. 

 

Figure 5 confirms that snow cover has a large cooling impact on 

the mean temperatures in the cold season: snow cover acts as a 

climate switch between the two non-overlapping regimes. On 

daily timescales, the cooling is about −10 °C for the Prairies, 

where the surface albedo with snow cover is in the order of 0.7. 

The larger slope of −14.6 °C in fit (12a) for the change of mean 

cold season temperature with the fraction of days with snow 

cover suggests that there may be coupling to larger scales that 

enhance the regional cooling with snow cover. 
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Figure 5: Drop of temperature with fresh snowfall (top-left), climate cooling 

with snow cover in November and March as a function of opaque cloud (top-

right), 10 °C separation of cold season climates with and without snow cover 

(bottom-left), and (bottom-right) dependence of mean cold season temperature 

on fraction of days with snow cover (adapted from [11,14.15]. 

 

3.5. Coupling of Warm Season Diurnal Ranges and 24-h 

Imbalances to Opaque Cloud  
 

This very large hourly dataset allowed us for the first time to 

extract the radiatively forced diurnal ranges, shown in Equations 

(1) and (2), for the key thermodynamic variables [14]. Here, we 

will just show the warm season; the cold season can be found in 

[14]. From Figure 2, we extracted DTR as a function of opaque 

cloud and month, and we extracted DRH, DθE, and DPLCL from 

similar diurnal composites (not shown). Close examination of 

Figure 2 shows that there is a discontinuity across local midnight 

that changes with opaque cloud cover. So we calculated, also for 

the first time, this 24 hr imbalance of the diurnal cycle as a 

function of opaque cloud and month. These are key conceptual 
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improvements in our understanding of the diurnal cycle over land 

in the warm season, and our results are robust as there are about 

20,000 days per month. 

 

Figure 6 (top left panel) shows the mean diurnal ranges of 

temperature, DTR, relative humidity, DRH, and mean daily 

precipitation for the warm season months April to September 

with no snow. Remarkably, the diurnal ranges are tightly 

clustered [9,14], so we also show the 6-month warm season 

mean. The quadratic regression fits for the dependence of the 6-

month mean DTR and DRH on OPAQm are: 

DTR = 16.7(±0.4) − 9.3(±0.8) * OPAQm − 6.0(±0.7) * OPAQm
2 

(R
2 
= 0.992)                                                                             (13a) 

 

DRH = 47.5(±0.8) − 2.6(±1.4) * OPAQm − 38.9(±1.4) * OPAQm
2 

(R
2 
= 0.996)                                                                             (13b) 

 

The leading coefficient is the clear-sky diurnal range, which is a 

rise of 16.7 °C to the afternoon maximum, coupled to a fall of 

47.5% in RH from the morning maximum at sunrise. The cloudy 

limit for OPAQm = 1, given by these fits, are the small values 

(DTR, DRH) = (1.4 °C, 6.0%). 

 

Monthly mean precipitation is very low for OPAQm < 0.4, and 

the increase of precipitation with OPAQm is largest in summer, 

peaking in July when T and the mixing ratio Q also peak. 

However, because June has substantially greater opaque cloud 

cover [12], mean June precipitation (2.28 mm d
−1

) is greater than 

July (1.91 mm d
−1

). 
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Figure 6: The opaque cloud dependence of the diurnal ranges of T, RH, θE, and 

PLCL (left) and (right) the 24 hr imbalance of the diurnal cycle (adapted from 

[14]). 

 

Figure 6 (top right) shows the 24 hr imbalances of ΔT24 and 

ΔRH24, which we calculated from the discontinuities across local 

midnight [14]. We see that over the range of OPAQm from 0.05 

to 0.95 (nearly clear to nearly opaque cloud cover), the mean 

(ΔT24, ΔRH24) change monotonically from (+2 °C, −6%) to (−1.5 

°C, +6%). Under nearly clear skies, the warming, and drying 

over the diurnal cycle is slightly larger in April, May, and June 

when the mean temperature is increasing seasonally, and slightly 

smaller in August and September. Under cloudy skies, there is a 

larger increase in ΔRH24 in April and May. The SE of the hourly 

binned data from which Figure 6 is derived as ≈0.1 K for T, 

≤0.5% for RH. 

 

The warming of +2 °C and a drying of −6% over the diurnal 

cycle under nearly clear skies is about 12% of both the DTR and 

DRH. The cooling of −1.5 °C and a moistening of +6% under 

very cloudy skies may be coupled to both the evaporation of rain 
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and downdraft transports. The uniform progression of the diurnal 

imbalance with increasing cloud is not surprising. However, this 

means that a steady state diurnal cycle only exists under partly 

cloudy conditions: for the 6-month mean, ΔT24, and ΔRH24 cross 

zero for OPAQm = 0.45. This presents a conceptual challenge for 

equilibrium models for the non-precipitating convective BL over 

land [21]. 

 

Figure 6 (lower panels) are the corresponding warm season 

diurnal ranges and 24 hr imbalances for θE and PLCL. The spread 

in the diurnal ranges and the diurnal imbalances is again small 

from April to September. For the 6-month means, the quadratic 

regression fits for the OPAQm dependence are: 

 

DθE = 19.7(±0.7) − 9.4(±1.2) * OPAQm − 7.5(±1.2) * OPAQm
2
 

(R
2 
= 0.983)           (14a) 

 

DPLCL = 181.4(±4.9) − 90.3(±9.0) * OPAQm − 81.1(±8.7) * 

OPAQm
2
 (R

2 
= 0.991)         (14b) 

 

Again, the leading coefficient is the clear-sky diurnal range, 

which is a rise of (θE, PLCL) = (19.7 K, 181.4 hPa) from the 

morning sunrise minimums. The cloudy limit for OPAQm = 1, 

given by these fits, are the small values (DθE, DPLCL) = (2.73 K, 

10.0 hPa). 

 

The bottom-right panel for the corresponding monthly mean 24 

hr imbalances shows that under nearly-clear skies, there is an 

increase of +2.9 K for ΔθE24 and +18.6 hPa for ΔPLCL24, which are 

14.9% and 10.5% of the respective diurnal ranges. There is a 

corresponding small 24 hr imbalance of mixing ratio, ΔQ24, of 

+0.2 gkg
−1

 (not shown). At the other limit under nearly-overcast 

skies, typically with rain, the 24 hr imbalance is a fall of −2.6 K 

for ΔθE24 and −14.6 hPa for ΔPLCL24, with a corresponding fall of 

ΔQ24 of −0.24 gkg
−1

 (not shown). The SE of the hourly binned 

data from which these plots are derived is ≤0.3 K for θE and ≤1.5 

hPa for PLCL. On the seasonal timescale, we see that the 

imbalance of ΔθE24 is larger in April, May, and June over most of 

the OPAQm range as the climate warms, and smaller in August 

and September. However for ΔPLCL24, the seasonal response has 
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an asymmetric structure that is consistent with ΔRH24, since a 

lower RH is tightly coupled to a higher PLCL.  

 

Figure 6 shows the remarkably tight climatological coupling 

from April to September which links opaque cloud cover, the 

diurnal ranges and the 24 hr diurnal imbalances, despite 

substantial differences in the solar zenith angle. Over the diurnal 

cycle, under nearly clear skies, we see a warming and drying, and 

a rise of θE and PLCL. At the cloudy extreme with rain, we see 24 

hr imbalances of opposite sign that are generally slightly smaller. 

These rather precise warm-season patterns across opaque cloud 

cover, and therefore cloud radiative forcing, set a clear target for 

modeling the partially cloudy boundary layer over land. 

 

4. Hydrometeorological Memory on Monthly 

Timescales  
 

The close coupling between the energy and water cycles at the 

land surface is central to hydrometeorology, and important to 

weather forecasts on timescales from days to seasons. An earlier 

review looked at hydrometeorology using global model 

reanalysis data [1], which showed how net long-wave and short-

wave radiation, cloud cover, surface fluxes, diurnal temperature 

range, soil moisture, and cloud-base height were coupled on daily 

timescales over river basins. Reanalysis data contain all the key 

variables, but historically, the observed near-surface climate 

variables were temperature and precipitation, along with 

pressure, wind, relative humidity, and snow-depth. Section 3.5 

shows that the warm season diurnal cycle is dominated by the 

radiative forcing of the opaque cloud cover. But on monthly and 

longer timescales, soil moisture anomalies are linked to 

precipitation anomalies, both for the current month and several 

preceding months. 

 

Here, we summarize some key results from [16], who merged the 

12 stations in Table 1 in Alberta and Saskatchewan for the years 

when precipitation is available. For this monthly analysis, the 

hourly data were processed as intact monthly mean diurnal cycles 

for each station for each year. As noted in Section 2.1, the hourly 

dataset is remarkably complete. Days were omitted if <20 hr of 
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data were available. Months were omitted if they had fewer than 

28 days remaining, except for February, where this threshold was 

reduced to 25 days. From the monthly diurnal cycles of T, RH, 

and PS, we computed the derived thermodynamic variables, Q, 

θE, and PLCL, and the diurnal ranges defined in Equations (1) and 

(2). 

 

For each variable, Y, we extracted from the monthly mean 

diurnal cycles, the daily mean, Ym, the maximum and minimum, 

Yx and Yn, and the times of the maximum and minimum [16]. 

We then computed the long-term station monthly mean, and used 

these to compute monthly anomalies, δY. For the daily 

precipitation and snow-depth, we also computed monthly means, 

the long-term station monthly means, and used these to compute 

monthly anomalies for each station. The monthly anomalies of 

opaque cloud, precipitation, snow depth, and snow cover 

frequency were then standardized by their monthly standard 

deviation (SD). For the temperature anomalies, δTm, δTx, δTn, 

and the diurnal temperature range, δDTR, we standardized by the 

monthly SD of δTm. Similarly for the variables, δRHm, δRHx, 

δRHn and the diurnal RH range δDRH, we standardized by the 

monthly SD of δRHm. The corresponding set of anomalies for 

equivalent potential temperature, δθE, and pressure–height to the 

LCL, δPLCL, were standardized by the monthly SD of δθEm, and 

δPLCLm respectively. 

 

We used multiple linear regression to explore the correlation 

between variables. Following [12,16], our starting format was to 

regress a standardized thermodynamic anomaly, δY, on opaque 

cloud anomalies (δOPAQm) for the current month, and lagged 

precipitation anomalies for the current month (δPR0) and 

preceding months (δPR1, δPR2, δPR3, δPR4, δPR5) in the form: 

 

δY = A * δOPAQ + B * δPR0 + C * δPR1 + D * δPR2 + E * 

δPR3 + F * δPR4 + G * δPR5           (15)  

 

Multiple regression shows no memory of cloud for previous 

months. Since we are using anomalies, the leading coefficient is 

of order zero, so it is not shown. After standardization, all 

variables are dimensionless. 
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4.1. Memory of Cold Season Precipitation in April 

Climatology  
 

On the Prairies, precipitation memory lasts through winter, as 

water is stored until the snowpack melts in late March or April. 

The reflective snow cover on the Prairies, with an albedo ≈0.7, 

acts as a climate switch that reduces Tm by 10 °C (Figures 2 and 

5). April is the month when the snowpack finally melts and the 

ground thaws. The upper group in Table 2 shows selected April 

standardized anomalies regressed on standardized anomalies of 

opaque cloud for April; and precipitation from April back to 

November (coefficients A to G in Equation (15)). We see that the 

April monthly anomalies show memories of the anomalies of 

precipitation 5 months back through the entire cold season to 

November, when typically the ground begins to freeze, and the 

first lasting snow occurs (Figure 5). Some of this memory 

remains in the March snowpack depth (not shown here, see [16]). 

 

For the first row, δOPAQ-Apr, the large negative coefficients for 

the monthly anomalies δDTR, δTx, and δPLCLx, mean that these 

variables decrease with increasing opaque cloud cover, while the 

positive sign for the δRHn and δRHm means that they increase 

with opaque cloud. For δTx and δDTR (and δTm, not shown), the 

negative coefficients B to G, for the months March back to 

November, mean that the positive cold season precipitation 

anomalies are correlated with cold April temperatures. For δRHn, 

δRHm (and δRHx, not shown), the positive coefficients, B to G, 

mean that positive cold season precipitation anomalies are 

correlated with higher RH in April. Most coefficients for δDTR, 

δRHn, δRHm, and δPLCLx (representative of afternoon cloud-base) 

have a 99% confidence (p < 0.01). 

 

There are several physical processes that are probably involved. 

The precipitation over the cold season is mostly stored in the 

snowpack till spring, when the melt absorbs energy and cools the 

surface; the melt also provides water for evaporation, which also 

cools and increases RH. In addition, the freeze-up of the soil in 

November may similarly preserve November precipitation 

anomalies as soil ice through the cold season until spring melt. 
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In April, the high albedo of the remaining snowpack, as well as 

fresh snow, also play a direct climate role, as discussed in 

Section 3.4 and shown in Figure 2, because snow cover acts as a 

climate switch. Thus, we computed the standardized April snow 

cover frequency anomaly from the fraction of days in April with 

snow depth >0, and added this to the multiple regression (15) to 

give: 

 

δY-Apr = A * δOPAQm-Apr + B * δPR-Apr + C * δPR-Mar + D 

* δPR-Feb + E * δPR-Jan + F * δPR-Dec + G * δPR-Nov + S * 

δSnowCover-Apr           (16) 

 

The lower group in Table 2 shows the coefficients from Equation 

(16). There is an increase in R
2
 for all variables, and especially 

for Tx, with the addition of snow cover. For maximum 

temperature, Tx, snow cover frequency anomalies have as large 

an impact as opaque cloud anomalies. Note that the coefficients 

G for δPR-Nov for δRHn, δRHm, and δPLCLx are not significant, 

but the coefficients G for δDTR and δTx have a confidence >99% 

in Table 2. It is possible that this is the cooling impact in April 

coming from the melt of soil–ice that was frozen back in 

November. 
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Table 2: Standardized regression coefficients for April anomalies in anomalies δDTR (diurnal range of temperature), δTx, δRHn, 

δRHm, and δPLCLx on standardized anomalies of opaque cloud and precipitation (upper group); and (lower group) adding fraction 

of April days with snow cover. For coefficients: plain text represents p < 0.01 (>99%); italic represents 0.01 ≤ p < 0.05, and 

coefficients are omitted for p > 0.05. 

 

 Variable 

620 months R2 

δDTR 

0.67 

δTx 

0.47 

δRHn 

0.65 

δRHm 

0.63 

δPLCLx 

0.66 

δOPAQm-Apr (A) −0.52 ± 0.02 −0.78 ± 0.04 0.76 ± 0.03 0.60 ± 0.03 −0.93 ± 0.04 

δPR-Apr (B) −0.06 ± 0.02  0.20 ± 0.03 0.17 ± 0.03 −0.19 ± 0.04 

δPR-Mar (C) −0.12 ± 0.02 −0.22 ± 0.04 0.23 ± 0.03 0.19 ± 0.02 −0.27 ± 0.03 

δPR-Feb (D) −0.07 ± 0.02 −0.12 ± 0.04 0.16 ± 0.03 0.13 ± 0.02 −0.19 ± 0.03 

δPR-Jan (E) −0.09 ± 0.02 −0.19 ± 0.04 0.17 ± 0.03 0.13 ± 0.02 −0.21 ± 0.03 

δPR-Dec (F) −0.06 ± 0.02  0.16 ± 0.03 0.14 ± 0.02 −0.19 ± 0.03 

δPR-Nov (G) −0.08 ± 0.02 −0.13 ± 0.04 0.07 ± 0.03 0.08 ± 0.02 −0.11 ± 0.03 

 Variable 

550 months R2 

δDTR 

0.73 

δTx 

0.65 

δRHn 

0.80 

δRHm 

0.70 

δPLCLx 

0.78 

δOPAQm-Apr (A) −0.49 ± 0.02 −0.57 ± 0.04 0.65 ± 0.03 0.54 ± 0.03 −0.82 ± 0.04 

δPR-Apr (B) −0.04 ± 0.02  0.16 ± 0.03 0.15 ± 0.03 −0.15 ± 0.04 

δPR-Mar (C) −0.08 ± 0.02 −0.07 ± 0.03 0.14 ± 0.03 0.14 ± 0.03 −0.18 ± 0.03 

δPR-Feb (D) −0.05 ± 0.02  0.09 ± 0.03 0.10 ± 0.03 −0.11 ± 0.03 

δPR-Jan (E) −0.05 ± 0.02  0.06 ± 0.03 0.07 ± 0.03 −0.08 ± 0.03 

δPR-Dec (F) −0.04 ± 0.02  0.12 ± 0.02 0.13 ± 0.02 −0.16 ± 0.03 

δPR-Nov (G) −0.06 ± 0.02 −0.10 ± 0.03    

δSnowCover-Apr (S) −0.19 ± 0.02 −0.63 ± 0.04 0.52 ± 0.03 0.31 ± 0.03 −0.57 ± 0.03 
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Table 2 shows that the climate in April, when the snow pack 

finally melts, has memory of precipitation through the entire 

previous winter up to November. Most of the variability in the 

April climate is explained by anomalies of winter precipitation 

and the fraction of days in April with residual snow cover. 

 

4.2. Growing Season Memory of Precipitation  
 

After snowmelt on the Prairies, the transition into the growing 

season months May to August (MJJA) is rapid, and typically, the 

memory of precipitation for the months May to August only goes 

back to March or April [16]. Merging the 2466 MJJA growing 

season months gives a unified description for the growing season 

correlation of the thermodynamic anomalies with opaque cloud 

and lagged precipitation, as shown in Table 3 and adapted from 

[16]. We retain the precipitation anomalies for four months. 

 

Table 3 shows that only some anomalies, such as δDTR, δRHn, 

δRHm, δPLCLx with high R
2
 values, are correlated with 

precipitation anomalies going back three months. As in Table 2, 

the OPAQ coefficients A are typically the largest, except notably 

for δQm. 
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Table 3: Standardized multiple regression coefficients for the May to August (MJJA) growing season 

merge of 2466 months. For coefficients: plain text represents p < 0.01 (>99%); italic represents 0.01 ≤ p 

< 0.05, and coefficients are omitted for p > 0.05. 

 

Variable A (δOPAQm) B (δPR0) C (δPR1) D (δPR2) E (δPR3) R2 

δTx −0.95 ± 0.02 −0.07 ± 0.02 −0.16 ± 0.02   0.58 

δTm −0.67 ± 0.02 0.03 ± 0.02 −0.10 ± 0.02   0.43 

δTn −0.34 ± 0.02 0.18 ± 0.02  0.04 ± 0.02  0.13 

δDTR −0.61 ± 0.01 −0.26 ± 0.01 −0.15 ± 0.01 −0.05 ± 0.01 −0.03 ± 

0.01 

0.73 

δRHn 0.59 ± 0.01 0.37 ± 0.01 0.23 ± 0.01 0.09 ± 0.01 0.03 ± 0.01 0.69 

δRHm 0.53 ± 0.01 0.32 ± 0.01 0.24 ± 0.01 0.11 ± 0.01 0.04 ± 0.01 0.61 

δRHx 0.38 ± 0.02 0.20 ± 0.02 0.20 ± 0.01 0.10 ± 0.01 0.04 ± 0.01 0.36 

δDRH −0.22 ± 0.01 −0.18 ± 0.01 −0.03 ± 0.01   0.26 

δPLCLx −0.76 ± 0.02 −0.42 ± 0.02 −0.31 ± 0.01 −0.13 ± 0.01 −0.05 ± 

0.01 

0.68 

δPLCLm −0.55 ± 0.01 −0.30 ± 0.01 −0.25 ± 0.01 −0.12 ± 0.01 −0.04 ± 

0.01 

0.62 

δPLCLn −0.30 ± 0.01 −0.15 ± 0.01 −0.16 ± 0.01 −0.08 ± 0.01 −0.03 ± 

0.01 

0.36 

δDPLCL −0.46 ± 0.01 −0.27 ± 0.01 −0.15 ± 0.01 −0.05 ± 0.01  0.58 

δθEx −0.55 ± 0.02 0.28 ± 0.02 0.08 ± 0.02 0.12 ± 0.02  0.21 

δθEm −0.42 ± 0.02 0.30 ± 0.02 0.09 ± 0.02 0.11 ± 0.02  0.17 

δθEn −0.22 ± 0.02 0.34 ± 0.02 0.09 ± 0.02 0.11 ± 0.02  0.13 

δDθE −0.32 ± 0.01 −0.06 ± 0.01    0.37 

δQm −0.06 ± 0.02 0.41 ± 0.02 0.22 ± 0.02 0.16 ± 0.02  0.22 
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The first groups are the regression coefficients for the 

temperature anomalies, δTx, δTm, δTn, and δDTR, which were all 

standardized by the SD of δTm. The fit represented by R
2
 is 

largest for DTR, and it decreases from δTx to δTn. All the 

temperature variable anomalies show a strong inverse correlation 

with opaque cloud anomalies that reflect the downward SW 

radiation. The warm season is dominated by negative SWCF as 

shown in Figure 3. The negative values of A decrease from δTx 

to δTn. δDTR has a negative correlation to both cloud anomalies, 

and to the precipitation anomalies going back three months. Note 

that because all the temperatures were standardized by the SD of 

δTm, the coefficients for the diurnal range are the difference of 

the corresponding coefficients for the maximum and minimum. 

For example, A(δDTR) = −0.61 = A(δTx) − A(δTn), and 

B(δDTR) = −0.26 = B(δTx) − B(δTn) (rounded to two significant 

figures). We see that the coefficients B change sign in the 

sequence from δTx to δTm to δTn. We also see that Tm falls 

strongly with cloud, but its coupling to precipitation is weak 

because the coefficients B and C have opposite signs. This 

regression analysis clearly shows that mean temperature 

anomalies, δTm, are strongly coupled to cloud, and therefore solar 

forcing, but rather weakly to precipitation, while δDTR (and δTx) 

decrease with both cloud and precipitation. We cannot infer 

causality from multiple regressions, but negative B for δTx is 

consistent with evaporation from moist soils reducing Tx, and the 

positive B for δTn is consistent with the fact that under wetter 

conditions, the fall of Tn at night is limited by saturation. 

 

The next group are the four RH anomalies, δRHx, δRHm, δRHn, 

and δDRH. For the first three, the regression coefficients show 

that positive RH anomalies are correlated with positive cloud and 

precipitation anomalies, and the coefficients are significant for 

both the present and three past months. The coefficients for 

δDRH are negative because δRHn increases faster with cloud and 

precipitation than δRHx, and the coefficients are significant for 

only one past month. The R
2
 fit decreases monotonically from 

the afternoon minimum δRHn to δRHm to the sunrise maximum 

δRHx to δDRH. The diurnal cycle of T and RH have an inverse 

dependence on opaque cloud, reaching Tx and RHn in the 

afternoon at the same time [16]. This is related to the fact that 
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mixing ratio Q is tightly constrained by BL transports, which we 

will discuss in Section 4.3. However, over land, near-surface RH 

is constrained by the availability of soil moisture for evaporation 

from bare soil and transpiration (which is often modeled as a 

stomatal resistance to evaporation [22,23]. Soil moisture 

anomalies are related in turn to precipitation anomalies. We see 

that afternoon RHn and mean RHm anomalies have a strong 

positive correlation to precipitation anomalies, and a large R
2
. 

However, RHx, which increases with precipitation, is limited if 

the surface saturation is reached and dew forms before sunrise. 

Because the latent heat release slows the temperature fall, it is 

consistent that RHx and Tn anomalies are both positively coupled 

to wetter precipitation anomalies for the current month 

(coefficient B). 

 

The third group in Table 3 is the four PLCL anomalies: PLCLx is 

generally representative of afternoon cloud-base [9]. PLCL has a 

strong dependence on RH and a weak dependence on T, and we 

see that negative PLCL anomalies are coupled to positive cloud 

and precipitation anomalies. The coefficients are largest for 

afternoon δPLCLx, for which R
2
 is high. The coefficients for 

δPLCLx, δPLCLm, and δPLCLn are all 99% significant for both the 

present and three past months, showing that cloud-based 

anomalies have a long memory of precipitation anomalies in the 

growing season. 

 

The fourth group in Table 3 shows the coefficients for δθEx, δθEm, 

δθEn, and δDθE. The first three show the decrease with increased 

cloud, but an increase with precipitation. The R
2
 values are small, 

even though the coefficients have 99% confidence. The diurnal 

range of θE is dominated by the dependence of DTR on opaque 

cloud. The two afternoon anomalies, δθEx and δPLCLx, are related 

to moist convective instability, which is favored by a higher θEx 

and a lower cloud base. 

 

The diurnal variation of the mixing ratio, Q, has a double 

maxima and minima, which we will show in Section 4.3, and so 

Table 3 shows only the coefficients for the mean anomaly δQm. 

The R
2
 fit is much smaller for Q than for RH. The negative 

correlation to opaque cloud is small, because T and RH have an 
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inverse diurnal dependence on cloud. The positive correlation to 

precipitation anomalies goes back two months, consistent with 

positive precipitation anomalies increasing evapotranspiration. 

 

Table 3 summarizes the multiple regression correlation 

coefficients between warm season near-surface variables and 

opaque cloud and lagged precipitation, and gives a quantitatively 

useful target for the evaluation of the coupled processes in 

models. Two important conceptual results emerge for the 

monthly mean climate on the Canadian Prairies. Afternoon 

anomalies of δTx, δRHn, δPLCLx are strongly correlated to opaque 

cloud anomalies. Correlation with precipitation anomalies are 

weaker, but stretch back for three past months for these key 

variables. Anomalies of Qm are coupled to precipitation 

anomalies with memory of two months past, but they have weak 

correlations to opaque cloud. 

 

4.3. Growing Season Coupling of the Diurnal Cycle to 

Precipitation and Cloud  
 

Figure 6 showed the very tight coupling in the warm season 

between opaque cloud and the diurnal range of key 

thermodynamic variables on daily timescales. Table 3 used 

multiple linear regression to show the correlation of the monthly 

anomalies of thermodynamic variables to anomalies of opaque 

cloud and precipitation. Table 3 confirms the strong correlation 

with opaque cloud, but shows that the coefficients for the lagged 

precipitation anomalies differ considerably for different 

variables.  

 

For a graphical representation [16] we approximate by defining a 

weighted precipitation anomaly δPRwt, based on precipitation 

for just the current month and the past month: 

 

δPRwt = 0.6 * δPR0 + 0.4 * δPR1           (17) 

 

This simplification, with this choice of coefficients in the ratio of 

1.5, captures much of the precipitation dependence for the 

variables that have the highest R
2
, such as DTR, RHn, and PLCLx, 
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because these have the ratio of the coefficients B/C ≈ 1.5 in 

Table 3. 

 

The x-axis of Figure 7 is 0.1 bins of OPAQm = δOPAQm + 0.46, 

where 0.46 is the mean opaque cloud over all the months. For 

each MJJA month (total 2466 months), we computed the 

weighted anomaly δPRwt from (17), and added the MJJA mean 

precipitation rate of 1.8 mm d
−1

 to give PRwt = δPRwt + 1.8. We 

then stratified the data into three ranges of PRwt of <1.2 mm d
−1

; 

1.2 to 2 mm d
−1

, and >2 mm d
−1

, which have mean values of 0.9, 

1.6, and 2.6 mm d
−1

. There are (531, 1103, 832) months in these 

three PRwt bins. To generate Figure 7, we compute for each 

variable bin, the mean and standard error (SE) of the anomalies, 

and add back the MJJA variable means. 

 

Figure 7 (top-left) shows DTR and its components, Tx and Tn, the 

top-right shows DRH, RHx and RHn, the bottom-left shows DθE, 

θEx, and θEn and the bottom-right is DPLCL, PLCLx, and PLCLn. The 

strong dependence on opaque cloud, seen in Figure 6, clearly 

dominates most of these climate variables, since T falls and RH 

increases with increasing cloud. This is turn is connected to the 

weak dependence of Q on cloud (Table 3). The color scheme is 

red and blue, respectively, for the dry and wet precipitation bins. 

As PRwt falls, DTR increases faster than Tx. 

 

Figure 7 (top-right) shows that RHx and RHn (and RHm, not 

shown) increase with both cloud and PRwt, but because 

afternoon RHn increases faster than RHx, DRH decreases with 

increasing PRwt. Note the rise of RHx with PRwt towards 

saturation. If RHx reaches saturation at the surface on individual 

days, condensation of dew and the release of latent heat limit the 

fall of Tn. 
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Figure 7: Coupling between DTR, Tx and Tn (top-left), (top-right) difference 

in relative humidity (DRH), RHx and RHn, (bottom-left) DθE, θEx and θEn and 

(bottom-right) DPLCL, PLCLx and PLCLn and opaque cloud fraction and weighted 

precipitation in mm d−1 (adapted from [16]). 

 

Figure 7 (bottom panels) show the variables that determine the 

BL coupling to clouds and precipitation. Afternoon PLCLx and θEx 

determine the cloud-base height and moist adiabat. Both θEx and 

θEn increase with PRwt, but the diurnal range DθE depends 

primarily on cloud instead of precipitation, as shown in Table 3. 

All of the PLCL variables decrease with increasing PRwt. The 

sunrise minimum of PLCLn falls with PRwt, as the surface moves 

towards saturation. Thus, higher precipitation, which we can 

loosely associate with increased daytime evapotranspiration 

(ET), corresponds with a lower monthly mean cloud base and a 

higher θE in the afternoon, which would both favor increased 

convective instability. 

 

In the warm season on the Prairies, the diurnal cycle of mixing 

ratio Q has two maxima and minima, except under cloudy 

conditions [9,14,16]. We can graph this dependence on 
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anomalies of opaque cloud cover, δOPAQm, and weighted 

precipitation anomalies, δPRwt, from Equation (17) in mm d
−1

, 

from the MJJA growing season merge of 2466 months. 

 

Figure 8 (left panel) shows the stratification by δOPAQm into 

four ranges: δOPAQm < −0.08; −0.08 to 0; 0 to 0.08, and >0.08, 

based on the SD of δOPAQm ≈ 0.08. There are (371, 839, 909, 

347) months in these respective bins. We averaged in bins the 

diurnal cycle of the anomalies from the station monthly means, 

calculate the SE, and added back the 12-station MJJA mean of Q. 

The legend shows the mean value for each δOPAQm bin, and in 

parentheses the corresponding mean of δPRwt. As the mean 

δOPAQm increases from −0.12 to +0.12, the mean δPRwt 

increases from −0.43 to +0.42 mm d
−1

. We have binned by 

δOPAQm, but mean OPAQm and precipitation increase together 

(Figure 6). The small increase in Qm with δOPAQm is consistent 

with Table 3. 

 

 
 

Figure 8: Dependence of diurnal cycle of the mixing ratio (Q) on opaque cloud 

bins (left) and weighted precipitation bins (right) [16]. 

 

The sunrise minimum of Q occurs at the minimum temperature, 

when the night-time BL is shallow with a strong temperature 

inversion. As the surface net radiation turns positive after sunrise, 

it drives increasing surface sensible and latent heat fluxes. This 

warms and moistens a shallow ML trapped beneath the stable 

nocturnal inversion, and there is a steep rise of Q. When the 

surface potential temperature reaches that of the top of the 

capping inversion in mid-morning, the ML deepens more rapidly, 
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typically mixing into a deep drier residual ML from the previous 

day, so that Q falls to the afternoon minimum. With less cloud 

and more solar forcing, the ML can grow deeper, and mix with 

more dry air from above, so both the morning rise and mid-day 

fall of Q are larger in Figure 8. Finally Q rises again to an 

evening maximum as the surface layer cools and decouples from 

the deep BL, while ET continues. 

 

Figure 8 (right panel) is the corresponding partition into four 

ranges of weighted precipitation anomalies: δPRwt < −0.7; −0.7 

to 0; 0 to 0.7, and >0.7 mm d
−1

, based on the SD of δPRwt ≈ 0.7 

mm d
−1

. There are (387, 961, 745, 373) months in these 

respective bins. The legend shows the mean value for each 

δPRwt bin, and again in parentheses the corresponding mean of 

δOPAQm. With increasing δPRwt, there is a large upward shift of 

the mean diurnal cycle of Q, as Qm increases with precipitation 

anomalies, which we can associate with increased soil moisture 

and ET. As the mean δPRwt increases from −0.99 to +1.23 mm 

d
−1

, mean δOPAQm increases from −0.05 to +0.05, and the fall of 

Q from mid-morning maximum to afternoon minimum is 

reduced as in the left panel. 

 

Clearly, we are dealing with a fully coupled system, but Figure 8 

shows that climatologically, while the amplitude of the diurnal 

cycle of Q increases a little with reduced cloud cover 

(presumably increased solar forcing and vertical mixing), there is 

a large upward shift in the diurnal cycle with increased weighted 

precipitation, presumably from increased ET. 

 

5. Seasonal Climate Issues  
5.1. Seasonal Extraction of Surface Total Water Storage  

 

We made a simplified estimate of the growing season water and 

energy budgets of the Prairies in [12], using fits between opaque 

cloud and cloud forcing (see Section 3.3) to estimate the surface 

radiation budget. We calculated the seasonal change in total 

water storage from the GRACE, using the gridded 1 × 1 degree 

monthly land mass grids [7,8], version JPL-

RL05.DSTvSCS1401, for liquid water equivalent thicknesses for 

the decade of 2002–2012. This allowed us to link the draw-down 
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of total water storage (TWS) [24,25] to precipitation anomalies 

during the growing season. We will present a brief overview, 

referring to [12] for discussion of some of the uncertainties. 

 

Figure 9 shows the mean annual cycle of the monthly anomalies 

of TWS from the annual mean, with the small 2002–2012 trend 

removed. Although the data have been interpolated to a 1 × 1 

degree grid for user convenience, the effective spatial resolution 

of the GRACE data is about 300 km, so we averaged the data 

over the Prairie regions of the three provinces. The amplitude of 

the mean annual cycle is 90 mm. We computed ΔTWS:MJJA, 

the growing season drawdown of TWS for MJJA, as the 

difference between 31 August (mean of August and September) 

and 1 May (mean of April and May) for each year and province. 

Mean drawdown is ΔTWS:MJJA = −79 mm. 

 

 
 

Figure 9: The mean annual cycle of Gravity Recovery and Climate 

Experiment (GRACE) total water storage (TWS) anomaly by province 

(from [12]). 

 

We regressed the anomalies of ΔTWS:MJJA for the years 2002–

2012 onto the corresponding anomalies of MJJA precipitation, 
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derived from the monthly archive (see [26]: http://ec.gc.ca/dccha-

ahccd/) of the second generation adjusted precipitation dataset. 

The linear regression fit [12] with R
2
 = 0.56, is: 

 

ΔTWS:MJJA = −0.59(±0.08) + 0.56(±0.09) δPrecip(MJJA)    (18)  

 

The mean value of Precip(MJJA) for 2002–2012 (details in [12]) 

is 2.32 mm d
−1

, while the mean drawdown of TWS is 0.59 mm 

d
−1

 for δPrecip(MJJA) = 0; or 25% of the mean precipitation. 

Thus Equation (18) shows that, as δPrecip(MJJA) decreases from 

+1 to −1 mm d
−1

, ΔTWS:MJJA increases from near zero to −1.15 

mm d
−1

, which corresponds to −141 mm over the 123 day 

growing season. The coupling coefficient of 0.56(±0.09) in 

Equation (18) is effectively a 56 ± 9% damping coefficient for 

precipitation anomalies in the growing season by changes in the 

drawdown of TWS. This drawdown of stored water in the 

growing season means that ET > precipitation, and this 

difference increases in dry summers. 

 

5.2. Impact of Land-Use Change on Growing Season 

Climate  
 

In recent decades, there has been a major change in land use 

across the Canadian Prairies, as more than five million hectares 

of summer fallow have been converted to continuous cropping 

[10]. This large increase in the area of cropland has increased 

summer transpiration, which in turn have reduced the maximum 

temperatures in the growing season over the Prairies [27]. Other 

analyses of US Midwest summer temperature maxima also show 

a cooling from land-use change to cropland [28] and cropland 

intensification [29]. 

 

Figure 10 summarizes the long-term climate impact of the 

reduction of summer fallow in Saskatchewan [10,15]. The left 

panel shows the land-use trends in total cropland, pasture, and 

summer fallow around five climate stations in Saskatchewan. We 

generated local averages of the ecodistrict crop data [10] within 

the 50 km radius circles around each station, as shown in Figure 

1. The climate station time-series was split into two periods: a 

longer historic period, 1954–1991, when summer fallow cover 
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was large (although slowly decreasing), and a recent 20-year 

period, 1992–2011, when summer fallow has fallen rapidly to its 

present low value [30]. 

 

 
 
Figure 10: Long term trends in total cropland, pasture, and summer fallow 

around five climate stations in Saskatchewan (left); (center) RHm, Qtx and mean 

precipitation in southern Saskatchewan, and (right) mean changes in annual 

cycle of Tx, PLCLtx, and θEtx for Saskatoon, Regina, and Estevan (adapted from 

[10,15]). 

 

The center panel shows the changes between the two time 

periods. For RHm and mixing ratio Qtx at the time of the 

afternoon Tx. We averaged the 10-day means from Saskatoon, 

Regina, and Estevan, the three southern stations in Saskatchewan 

with complete datasets [10]. We show the standard errors (SE) of 

the difference between the two mean time series as an indication 

of significance. For precipitation, which has much more 

variability than temperature and humidity, we used monthly 

precipitation for the 21 stations in Saskatchewan south of 53.22° 

N, from the second generation-adjusted precipitation dataset [26]. 

Error bars are the SE of each monthly mean. The right panel 

shows the corresponding changes in the annual cycle of Tx, 

PLCLtx, and θEtx between the two time periods. 

 

It is clear that there are significant changes in the growing season 

climate between the historic period, 1953–1991, and the more 

recent period since 1992. The vertical dashed lines mark the 

period 140 ≤ DOY < 240 (20 May–27 August) considered in [10] 

to be representative of the crop growing season. Over this time 

window, the growing season is cooler since 1992, with a drop of 

Tx of −0.93 ± 0.09 K, and significantly moister with a rise of 

(RHm, Qtx) of (6.9 ± 0.2%, 0.70 ± 0.04 gkg
−1

). There is a 

corresponding fall of the PLCLx of 22.3 ± 1.1 hPa, and a small rise 

of θEtx of 1.1 ± 0.2 K, both at the time of afternoon Tx. There is 
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also an increase of summer (June, July, and August) precipitation 

of 25.9 ± 4.6 mm. 

 

It is reasonable to conclude that we are seeing the fully coupled 

response to the large shift from summer fallow to intensive 

cropping. It seems that more intensive agriculture has increased 

transpiration, which has cooled and moistened the growing 

season climate, lowering the cloud-base and increasing the 

equivalent potential temperature. The coupled increase of Q with 

precipitation is consistent with Figure 8; and the increase of 

summer precipitation is consistent with the increase in moist 

instability, represented by lower afternoon PLCLx and higher θEtx. 

Not shown here is a distribution shift in cloud frequency: with 

6% fewer days with 2–4 tenths, and 7% more with 7–10 tenths 

cloud cover [10]. 

 

5.3. Warm Season Atmospheric and Surface Energy 

Budgets  
 

The Prairie climate data have no surface nor TOA fluxes, so we 

will use flux data from ERA-Interim to put our analyses in the 

context of the atmospheric and surface energy budgets for the 

MJJA warm season. We used gridpoint data co-located with the 

four climate stations Estevan, Regina, Saskatoon, and Prince 

Albert in Saskatchewan that were used in [31] to analyze the 

near-surface biases of temperature in ERA-Interim. We 

computed the terms in the atmospheric TOA and surface energy 

budget, first on a daily basis, and then for each MJJA station-

year, dropping a few days in May with surface snow cover. 

Figure 11 is a simplified graphical representation of the key flux 

terms for this region of the central Prairies from 49.2 to 53.2° N. 
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Figure 11: Schematic for surface and top-of-atmosphere (TOA) energy budgets 

for Prairie region of southern Saskatchewan. 

 

On the left is the SW budget terms. Part of the incoming TOA 

solar flux is absorbed by the atmosphere, part reflected by clouds 

and atmospheric aerosols, and part is reflected by the surface; so 

that surface SWn = 212 W m
−2

 is about half the TOA downward 

flux. On the right is the LW budget terms, where the upward 

surface LW emission of 400 W m
−2 

is mostly absorbed by the 

atmospheric greenhouse gases, primarily water vapor and CO2, as 

well as by clouds. About 10% escapes to space through the 

atmospheric infrared window. Clouds and atmosphere re-emit to 

space, and back to the surface, giving a surface LWn = −73 

Wm
−2

. The resulting surface Rn = 139 W m
−2

 balances the 

upward sensible and latent heat fluxes (40 and 82 W m
−2

 

respectively), and the growing season warming of the ground of 

17 W m
−2

, which is probably too large [31]. For the MJJA 

surface water budget, precipitation is 2 mm d
−1

 and ET is 2.8 mm 

d
−1

. ET exceeds precipitation in the growing season, because of 

the substantial drawdown of surface water storage, as discussed 

in Section 5.1. The TOA SWn > outgoing LW for the MJJA 

warm season. 

 

Table 4 stratifies the 140 station years of data into ECA bins, 

showing how reflective cloud cover changes the TOA and 

surface energy budgets. The mean values across all the data in 

bold are those that are shown as rounded values in Figure 11. The 
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model sign convention is downward fluxes are positive and 

upward fluxes are negative. The number of station-years in each 

bin, denoted by K, is not uniform, nor is the distribution across 

the four stations. Nonetheless, there is a uniform progression as 

reflective cloud (ECA) increases: TOA SWn, surface SWdn, net 

radiation, Rn, the sensible heat flux, SH, Bowen ratio, BR, and 

the 2 m temperatures all decrease, while the latent heat flux, LH, 

and precipitation increase. There is compensation between the 

surface SWn and LWn fluxes as reflective cloud changes, which 

reduces the change in Rn. If there is less reflection by clouds, 

SWdn increases, and this warms the surface, and LWup increases. 

Because the decrease of cloud cover and precipitation are 

coupled, and ET changes much less than precipitation, we see 

that the surface BR increases by a factor of two as cloud cover 

and precipitation decrease. 
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Table 4. Surface and TOA fluxes for the MJJA warm season from ERA-Interim for 1979–2013, stratified by ECA, derived from the gridpoints for Estevan, Regina, Saskatoon, and 

Prince Albert, SK. Mean data in bold are shown in Figure 11. 

 

ECA K TOA SWdn TOA SWn Surf SWCSdn Surf SWdn SWCF Surf SWup Surf SWn Surf Albedo TOA LWup Surf LWup Surf LWdn Surf LWn 

0.146 11 427 326 327 279 −48 −54 225 0.19 −257 −412 328 −84 

0.178 34 427 320 325 268 −58 −49 218 0.18 −252 −406 329 −77 

0.203 47 426 315 324 258 −66 −45 213 0.17 −250 −400 327 −74 

0.230 32 424 310 322 248 −74 −40 208 0.16 −247 −396 326 −69 

0.278 16 427 299 323 233 −90 −38 195 0.16 −242 −389 325 −64 

0.207 140 426 314 324 257 −67 −45 212 0.17 −249 −400 327 −73 

ECA K Rn SH LH BR G PRECIP ET Runoff Tx Tm Tn DTR 

0.146 11 141.6 −53.2 −71.8 0.78 16.7 1.13 −2.48 0.07 24.4 18.5 12.1 12.3 

0.178 34 141.4 −46.1 −77.4 0.62 17.9 1.69 −2.67 0.04 23.0 17.4 11.2 11.8 

0.203 47 139.6 −41.1 −81.5 0.53 17.0 1.91 −2.82 0.06 22.0 16.5 10.5 11.5 

0.230 32 138.3 −33.3 −88.9 0.39 16.1 2.18 −3.07 0.13 21.0 15.8 10.1 11.0 

0.278 16 130.8 −30.9 −84.5 0.37 15.4 2.92 −2.92 0.13 19.4 14.5 9.2 10.3 

0.207 140 138.9 −40.3 −81.8 0.52 16.8 1.97 −2.83 0.08 21.9 16.5 10.6 11.4 
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The reanalysis is a fully coupled model representation of the 

Prairie climate for this 35 yr period, mapped here in terms of 

changing ECA. On average ET exceeds precipitation by 0.86 mm 

d
−1

, which is largely consistent with the budget analysis in 

Section 5.1, based on the GRACE data. There is a substantial 

MJJA drawdown of about 80 mm of soil water (not shown), 

because the model has four soil layers to a total depth of 2.89 m 

with a dynamic range of water storage of 150 mm per meter 

between field capacity and permanent wilting point. However, 

the model soil water budget has additional increments, because 

the soil moisture reanalysis uses observed 2 m values of 

temperature and humidity and satellite estimates of soil moisture 

[32] to minimize the model 2 m temperature forecast errors. 

Despite this analysis correction, we found in [31] that on daily 

timescales, ERA-Interim in the warm season has a cold bias in Tx 

and a warm bias in Tn, so that DTR is biased low; and these 

biases increase under clear skies. Table 4 stratifies four-month 

composites by ECA, so that it is not directly comparable to the 

daily analysis in [31], but it is likely that Tx and Tn in Table 4 

have respectively cold and warm biases of about 1 °C. 

 

6. Conclusions  
 

We have reviewed progress in the quantitative understanding of 

the coupling between the land surface, clouds, precipitation, 

snow cover and the climate system that came from analysis of the 

long-term hourly Canadian Prairie dataset. This progress was 

possible because, along with conventional hourly measurements, 

trained observers have recorded opaque cloud fraction hourly 

across the Prairies for the past 60 years. These 24 daily estimates 

of opaque cloud are of sufficient quality such that they can be 

calibrated against BSRN data to obtain the climatology of the 

daily short-wave, long-wave, and total cloud forcing. This key 

radiative forcing of the surface energy budget has previously not 

been available for long-term climate datasets. We found that net 

cloud radiative forcing changes sign from negative in the warm 

season to positive in the cold season with snow cover. This 

transforms the coupling between cloud cover and the diurnal 

cycle between warm and cold seasons. In the warm season, 
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maximum temperature increases with decreasing opaque cloud, 

while minimum temperature barely changes. In contrast in the 

cold season with snow cover, maximum temperature falls with 

decreasing cloud while minimum temperature falls even more 

steeply. Although our results are stratified by the observed 

opaque cloud cover, we show the regression Equations (10) and 

(11) that convert opaque cloud into cloud radiative forcing. 

 

We have shown the many ways in which snow cover acts as a 

climate switch between two non-overlapping climate regimes, 

producing a systematic cooling of 10 °C or more. With fresh 

snow cover in November, the temperature falls 10 °C during the 

transition. Simply separating cold season days into those with 

and without snow cover shows that these are two distinct 

climates, again separated by 10 °C. The traditional merging of 

these two climates is unrepresentative, since typically the near-

surface boundary layer also changes from unstable to stable with 

snow cover. As cloud cover falls, the climate cooling with snow 

increases. Mean cold season temperatures fall by almost 1.5 °C 

for each 10% increase in the fraction of days with snow cover. 

 

In the warm season with no snow cover, the diurnal ranges of 

temperature, relative humidity, equivalent potential temperature, 

and the pressure height of the lifting condensation level all fall 

steeply with increasing opaque cloud cover. Remarkably, this 

tight coupling between diurnal range and cloud cover is almost 

unchanged from April to September, so we provide quadratic fits 

to the mean profiles. Given 600 station-years of hourly data, we 

are able to extract, perhaps for the first time, the relationship 

between cloud forcing and the warm season imbalance of the 

diurnal cycle. This imbalance over 24 hr changes monotonically 

from a +2 °C warming and a −6% drying under clear skies, to a 

−1.5 °C cooling and 6% moistening under cloudy skies with 

precipitation. Correspondingly, there is a 24 hr rise of θE and 

LCL under clear skies, and a fall of both under cloudy skies. 

 

On daily timescales, the radiative forcing dominates, and the 

changing cloud forcing drives the changing diurnal cycle of the 

thermodynamic variables. On longer timescales, such as monthly 

and seasonal, precipitation anomalies, stored as soil moisture 
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anomalies, change the ET and modify the diurnal response. Since 

we know the cloud radiative forcing which is large on daily 

timescales, we can show statistically that the memory of water 

storage anomalies, from precipitation and the snowpack, goes 

back many months. The spring climatology for April shows the 

memory of snowfall back through the entire winter, and the 

memory in summer months goes back to the months of 

snowmelt. 

 

In addition, we showed how the thermodynamic coupling of the 

diurnal cycle to the cloud forcing is modified by lagged 

precipitation anomalies. With reduced precipitation, the diurnal 

ranges of T, RH, and PLCL, but not θE, increase. With increased 

precipitation, afternoon Tx falls a little, while RHn and θEx 

increase and PLCLx, representing cloud-base, falls. 

 

Climatologically, the diurnal cycle of Q has a sunrise minimum, 

a rise to a mid-morning maximum while evaporation is trapped 

beneath the nocturnal inversion, then a fall to an afternoon 

minimum, as water vapor is rapidly transported upward into a 

deep daytime BL; followed by a second rise to an evening 

minimum as the surface cools and starts to uncouple from the 

mixed BL. We showed that while the amplitude of the diurnal 

cycle of Q increases a little with reduced cloud cover 

(presumably from increased solar forcing and vertical mixing), 

there is a large upward shift in the diurnal cycle of Q as weighted 

precipitation increases, presumably from increased evaporation. 

 

The GRACE satellite data from a recent period show that the 

seasonal extraction of the surface total water storage is a large 

damping of the interannual variability of precipitation anomalies 

in the growing season. Over a range of precipitation anomalies of 

±1 mm d
−1

, the seasonal extraction of ground water increases 

from near-zero with high precipitation, to 1.15 mm d
−1

 for low 

precipitation. 

 

Also on seasonal timescales, the large land-use change on the 

Prairies from summer fallowing to intensive cropping, with the 

most rapid transition in the early 1990s, has led to a coupled 

climate response that has cooled and moistened the growing 
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season, lowering cloud-base, increasing equivalent potential 

temperature, and increasing precipitation. 

 

Finally, we compute the atmospheric energy and water budgets 

for four stations in Saskatchewan for the 35-y period of the ERA-

Interim reanalysis, to show graphically the mean TOA and 

surface budgets that are representative of the Canadian Prairies 

for the MJJA growing season. We also show the dependence of 

these budgets on reflective cloud cover for this fully coupled 

model system. 

 

More broadly, these long-term climate datasets from the Prairies 

can be used to improve the representation of clouds and land-

surface processes in numerical forecast models. A preliminary 

step was the assessment of the biases in the surface diurnal cycle 

of temperature in ERA-Interim [31], but much more is possible. 

For example, knowledge of the biases is providing 

meteorological information for regions where no data were 

previously available. We plan to investigate the impact of these 

biases on model estimates of crop yields and greenhouse gas 

emission estimates using the DNDC model [33]. With the 

improved knowledge of the energy budget for the Prairies, we 

can now investigate which management practices could 

significantly change the energy budget and allow farmers 

opportunities to minimize their impact on climate change. 
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