Understanding land-atmosphere coupling

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

Co-authors: Ray Desjardins, Devon Worth, Darrel Cerkowniak Agriculture and Agri-Food Canada Shusen Wang and Junhua Li Natural Resources Canada

> SUNY-Plattsburgh Sept. 29, 2014

Earth's climate sustains life

- Burning fossil fuels is increasing greenhouse gases
- Climate is warming: ice is melting, extreme weather is increasing
- Water plays crucial amplifying role

January 2, 2012: NASA

Water in the Climate System

- Vapor, liquid and ice
 - Ocean and land
- Shortwave reflectivity of clouds and snow
 - Effective cloud albedo, surface albedo with snow
- Vapor longwave (Infared) absorption
 - Water vapor greenhouse effect
 - Clouds 'black' in Infrared
- Surface Energy balance
 - Net radiation = λE + H + G
- Latent heat of phase changes
 - Evaporation: <u>λE</u> (Precip, soil water, stomatal control)
 - LH release drives clouds and storms

- Half the Arctic Sea Ice Melted in 2012
- Open water in Oct. Nov. gives warmer Fall in Northeast
 - **Positive feedbacks**:
 - Less ice, less reflection of sunlight
 - More evaporation, larger vapor greenhouse effect
 - <u>Same feedbacks as in</u> <u>our winters</u>

http://nsidc.org/arcticseaicenews/

Mysterious Ways of Science

- 2012 Agriculture-Canada asked for my help
 I said "Yes"
- Sent me all the Prairie data: preprocessed
 - Which is not publically available!
 - I found it contain cloud observations:
 - That I did not know existed
 - That give us the radiative fluxes
 - That transform our understanding

14 Prairie stations: 1953-2011

- *Hourly* p, T, RH, WS, WD, <u>Opaque Cloud</u> by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

Prairie Station Locations

Station Name	Station ID	Province	Latitude	Longitude	Elevation (m)
Red Deer*	3025480	Alberta	52.18	-113.62	905
Calgary*	3031093	Alberta	51.11	-114.02	1084
Lethbridge†	3033880	Alberta	49.63	-112.80	929
Medicine Hat	3034480	Alberta	50.02	-110.72	717
Grande Prairie*	3072920	Alberta	55.18	-118.89	669
Regina*	4016560	Saskatchewan	50.43	-104.67	578
Moose Jaw	4015320	Saskatchewan	50.33	-105.55	577
Estevan*	4012400	Saskatchewan	49.22	-102.97	581
Swift Current†	4028040	Saskatchewan	50.3	-107.68	817
Prince Albert*	4056240	Saskatchewan	53.22	-105.67	428
Saskatoon*	4057120	Saskatchewan	52.17	-106.72	504
Portage-Southport	5012320	Manitoba	49.9	-98.27	270
Winnipeg*†	5023222	Manitoba	49.82	-97.23	239
The Pas*†	5052880	Manitoba	53.97	-101.1	270

Outline

Review of published papers (alanbetts.com)

- Clouds and Diurnal Cycle over seasons
 Betts et al (2013a)
- Annual crops and seasonal diurnal cycle
 - Betts et al (2013b)
- Winter snow transitions and climate
 - Betts et al (2014a)

(+ many more)

References

- Betts, A. K. (2009), Land-surface-atmosphere coupling in observations and models. *J. Adv. Model Earth Syst., Vol. 1, Art. #4,* 18 pp., doi: 10.3894/JAMES.2009.1.4
- Betts, A.K., R. Desjardins and D. Worth (2013a), Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118,* 1–19, doi:10.1002/jgrd.50593
- Betts, A.K., R. Desjardins, D. Worth and D. Cerkowniak (2013b), Impact of land-use change on the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos., 118, 11,996–12,011, doi:10.1002/2013JD020717
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies. J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021168
- <u>http://alanbetts.com</u>

Methods: Analyze Coupled System

- Seasonal diurnal climate by station/region
- 220,000 days, excellent data (600 station-years)
 Not freely available!!
- Impact of reflective/<u>opaque cloud</u> on diurnal cycle in summer and winter

 Calibrate "cloud radiative forcing"
- Change of seasonal climate with cropping

 'Summerfallow' to annual crops on 5MHa in 30 yrs
- Impact of snow transitions
 - First snow in fall; spring melt of snowpack
 - Winter climate and % days snow cover

Clouds and Diurnal Climate

- Reduce hourly data to
 - daily means: T_{mean} , RH_{mean} etc
 - data at T_{max} and T_{min}
- Diurnal cycle climate
 - DTR = T_{max} - T_{min}
 - $\Delta RH = RH_{tn} RH_{tx}$
- Almost no missing hourly data

 (until recent government cutbacks!)

Compare Neighbors: 64 km

- Temp: 1 to 1: R² = 0.95
- Opaque Cloud: 1 to 1: R² = 0.88

Clouds to Summer Diurnal Cycle

- 40-yr climate
- T and RH are inverse
- Q has double maximum for BL transitions
- θ_{E} flatter
- Overcast (rain) [©]_u
 only outlier

Cloud Impacts

- Summer: Clouds reflect sunlight
 - no cloud, hot days; only slightly cooler at night
- Winter: Clouds are greenhouse
 - snow reflects low sun
 - clear & dry sky, cold days, very cold nights
- Fast transition with snow in 5 days

Betts et al. 2013

Annual Cycle: T_{max}, T_{min}, DTR, Precip

- Warm state: April – Oct
- Cold state:
 Dec Feb
- Transitions: Nov, Mar T_{max} ≈ 0°C
- Actually occur in <5 days

Annual Cycle: RH and ΔRH

- Warm state: April – Oct
- Cold state: Dec – Feb
- Transitions: Nov, Mar T_{max} ≈ 0°C
- Transition

 in <5 days
 with snow

Prairie Warm Season Climate

- 12 stations: Uniform climatology
- <u>Tiny variability</u> in DTR and ΔRH

Surface Radiation Budget

• $R_{net} = SW_{net} + LW_{net}$ = $(SW_{dn} - SW_{up}) + (LW_{dn} - LW_{up})$

Define Effective Cloud Albedo (reflection)

- ECA = (SW_{dn}(clear)- SW_{dn})/ SW_{dn}(clear) Clear sky
- $SW_{net} = (1 \alpha_s)(1 ECA) SW_{dn}(clear)$ Reflected by surface, clouds

MODIS Calibrate Opaque Cloud data

Diurnal Temperature Range *Warms in daytime and cools at night*

- Daytime warming related to clouds: ECA
- Night-time cooling related to clouds: LW_{net}

Warm Season Climate

- Sun warms surface; grass, trees transpire (<u>λE</u>)
- Heating forms unstable boundary layer
- Clouds form at lifting condensation level, reflecting sunlight

Cold Season Climate

- Low sun is reflected by snow
- Under clear sky, surface long-wave cooling
- Stable boundary layer forms

Impact of Snow on Climate "Winter transitions"

- Composite about snow date
 - First lying snow in fall
 - Final snow-pack melt in spring
- Gives mean climate transition with snow
 - 13 stations with 40-50 years of data
- Snow cover and winter climate
- Snow cover cools surface 10-14K
 - Snow cover is a fast "<u>climate switch</u>"
 - Shift to 'LW cloud forcing' from 'SW cloud forcing'
 - Shift to 'Cold when clear' from 'Warm when clear'

14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

N-S Albedo through Winter

- Prairies (SK) α_s: 0.2 to 0.73
- Boreal forest α_s:0.1 to 0.35
- MODIS: 10day, 250m, avg. to 50x50km to latitude bands

– <u>CCRS product</u>

Snowfall and Snowmelt

- Temperature falls 10C (18F) with first snowfall
- Similar change with snowmelt
- Snow reflects sunlight; reduces evaporation and water vapor greenhouse – changes 'local climate'

Betts et al. 2014

More snow cover - Colder temperatures

Betts et al. 2014

Recall: Annual Cycle: T_{max}, T_{min}

- Warm state: April Oct
- Transitions: Nov, Mar when T_{max} ≈ 0°C
- Cold state: Dec Feb

Snowfall is a 'Climate Switch'

- 5-day means: red: no snow; blue: snow (6000 days)
- With snow: T_{max}, T_{min} plunge
- Cloud coupling shifts in 5 days
- From 'Warm when clear' to 'Cold when clear'

Clouds: Summer & Winter Climate Opposite Impact

- Summer: Clouds reflect sunlight (soil absorbs sun)
 - no cloud, hot days; only slightly cooler at night
 - Convective boundary layer in daytime
- Winter: Clouds are greenhouse (snow reflects sun)
 - clear & dry sky, cold days and very cold nights
 - Stable boundary layer

Betts et al. 2013a

Role of LW_{dn} in Surface Radiation

- Snow reduces vapor flux
- Atmosphere cooler and drier
 - Less water vapor greenhouse
 - **-22 W/m**²
- Offset by 10% cloud increase with snow

Surface Radiation Balance

- Across snow transition
 - Surface albedo α_s increases: 0.2 to 0.73
 - LW_{dn} decreases
 - Opaque cloud increases
- SW_{net} falls 34 W/m²
- LW_{dn} falls 15 W/m²
- <u>Total 49 W/m²</u>
- Surface skin T falls: $\Delta T = -11K$ to balance (Stefan-Boltzman law: $\Delta(LW) = \Delta(\sigma T^4) = 4\sigma T^3 \Delta T$)

Annual crops and seasonal diurnal cycle

- Ecodistrict crop data since 1955
 - Ecodistricts mapped to soils
 - Typical scale: 2000 km² (500-7000)
- Ecozones
 - boreal plains ecozone
 - semiarid/subhumid prairie regional zones
- Shift from 'Summerfallow' (no crops) to annual cropping on 5 MHa (11 M acres)
 – Large increase in transpiration: Jun-Jul

13 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

Change in Cropping

- Ecodistrict mean for 50-km around station
- Saskatchewan: 25% drop in 'SummerFallow'
- Split at 1991- has summer climate changed?

Three Station Mean in SK

- Winter climate warmer but growing season
 - T_{max} cooler; RH moister
 - DTR and ΔRH seasonal structure changes

Impact on Convective Instability

Contrast Boreal Forest

• No RH, DTR signal

Summary

- High quality dataset with **Opaque cloud**
- Understand cloud coupling to climate
- Distinct warm and cold season states
 - Sharp transitions with snow cover: $\alpha_s = 0.7$
 - Snow cover is a "climate switch"
 - From 'Warm when clear', convective boundary layer
 - To 'Cold when clear', with stable boundary layer
- Transpiration from crops changes climate
 - Cools and moistens summer climate
 - Lowers cloud-base and increases θ_{E}
 - (While winter climate has warmed)

Papers at http://alanbetts.com

Transformative Concepts

- Snow as climate switch
- <u>Opaque/reflective cloud</u> - SWCF, LWCF \rightarrow R_n
- Diurnal climate analysis of T, RH
 - Dominated by cloud/R_n
 - BUT: Radiation only analysis
 - Because no soil moisture, or EF

Calibration of Opaque Cloud to Effective Cloud Albedo (ECA)

- SW_{dn} data
 - Lethbridge, Swift
 Current, The Pas,
 Winnipeg
 - 82 station-years
- Tight relationship
 - OpaqueCloud to ECA
 - NDJF a little flatter

Fit ECA and LW_{net} to Opaque Cloud

NDJF: ECA = 0.1056 + 0.0404 Cloud + 0.00158 Cloud² SO-MA: ECA = 0.0588 + 0.0365 Cloud + 0.00318 Cloud² MJJA: ECA = 0.0681 + 0.0293 Cloud + 0.00428 Cloud²

Gives SW_{net} from SW_{dn} (clear) and albedo α_s

NDJF: $LW_{net} = -63.0 + 3.14$ Cloud + 0.193 Cloud² SO-MA: $LW_{net} = -91.5 + 4.43$ Cloud + 0.267 Cloud² MJJA: $LW_{net} = -100.1 + 4.73$ Cloud + 0.317 Cloud²

Fall Snow Transition Climatology

- T_x, T_m, T_n fall about 10K
- Cloud peaks with snow; increases ≈10%
- Snow date: Nov 15 ± 3 days

Snow-melt Transition Climatology

- SW Alberta: T increase about 11K
- Saskatchewan: T increase about 10K
- 3 northern stations: increase 10K, slower
- Melt date: March 12–April 11

Snow Cover: Winter Climatology

- Alberta: 79% of variance
- Slopes
 - T_x -16.0(± 0.6) K
 - T_m -14.7 (± 0.6) K
 - T_n -14.0 (± 0.7) K

<u>10% fewer snow days</u> = 1.5K warmer