Understanding land-atmosphere coupling

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

Co-authors:

Ray Desjardins, Devon Worth, Darrel Cerkowniak *Agriculture and Agri-Food Canada* Shusen Wang and Junhua Li *Natural Resources Canada* Anton Beljaars, *ECMWF*

> George Mason Univ. Nov. 7, 2014

Water in the Climate System

- Vapor, liquid and ice
 - Ocean and land
- Shortwave reflectivity of clouds and snow
 - Effective cloud albedo, surface albedo with snow
- Vapor longwave (Infared) absorption
 - Water vapor greenhouse effect
 - Clouds 'black' in Infrared
- Surface Energy balance
 - Net radiation = λE + H + G
- Latent heat of phase changes
 - Evaporation: <u>λE</u> (Precip, soil water, stomatal control)
 - LH release drives clouds and storms

Serendipity in Science

- 2012 Ray Desjardins at Agriculture-Canada asked for my help
- Preprocessed the Canadian Prairie data
 - From hourly to daily
 - Has opaque/reflective <u>cloud observations</u>
 - That give radiative flux climatology
- Transform our understanding
 - Past hydromet based on Precip and T
 - In fact half seasonal timescale variance comes from radiation (and most of daily variance)

14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, <u>Opaque Cloud</u> by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

Prairie Station Locations

Station Name	Station ID	Province	Latitude	Longitude	e Elevation (m)	
Red Deer*	3025480	Alberta	52.18	-113.62	905	
Calgary*	3031093	Alberta	51.11	-114.02	1084	
Lethbridge†	3033880	Alberta	49.63	-112.80	929	
Medicine Hat	3034480	Alberta	50.02	-110.72	717	
Grande Prairie*	3072920	Alberta	55.18	-118.89	669	
Regina*	4016560	Saskatchewan	50.43	-104.67	578	
Moose Jaw	4015320	Saskatchewan	50.33	-105.55	577	
Estevan*	4012400	Saskatchewan	49.22	-102.97	581	
Swift Current†	4028040	Saskatchewan	50.3	-107.68	817	
Prince Albert*	4056240	Saskatchewan	53.22	-105.67	428	
Saskatoon*	4057120	Saskatchewan	52.17	-106.72	504	
Portage-Southport	5012320	Manitoba	49.9	-98.27	270	
Winnipeg*†	5023222	Manitoba	49.82	-97.23	239	
The Pas*†	5052880	Manitoba	53.97	-101.1	270	

References

- Betts, A.K., R. Desjardins and D. Worth (2013a), <u>Cloud radiative</u> forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118,* 1–19, doi:10.1002/jgrd.50593
- Betts, A.K., R. Desjardins, D. Worth and D. Cerkowniak (2013b), Impact of <u>land-use change</u> on the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos.*, 118, 11,996–12,011, doi:10.1002/2013JD020717
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of <u>winter climate transitions to snow</u> and clouds over the Prairies. *J. Geophys. Res. Atmos., 119*, doi:10.1002/2013JD021168
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014), Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. (*J. Geophys. Res. Atmos.* 2014JD022010, minor rev)
- Betts, A.K., R. Desjardins and A.C.M. Beljaars (2015): Land-surface-atmosphere coupling on daily timescales in the warm season. (in progress)

Methods: Analyze Coupled System

- Seasonal diurnal climate by station/region
- 220,000 days, excellent data (600 station-years)
 Little analysis as not freely available
- Impact of reflective/<u>opaque cloud</u> on diurnal cycle in summer and winter
 - Calibrate "cloud radiative forcing"
- Change of seasonal climate with cropping
 - 'Summerfallow' to annual crops on 5MHa in 30 yrs
- Impact of snow transitions
 - First snow in fall; spring melt of snowpack
 - Winter climate and % days snow cover
- Climate coupling between T, RH, Precip and cloud: monthly to seasonal

Clouds and Diurnal Climate

- Reduce hourly data to
 - daily means: T_{mean} , RH_{mean} etc
 - data at T_{max} and T_{min}
- Diurnal cycle climate
 - DTR = T_{max} - T_{min}
 - $\Delta RH = RH_{tn} RH_{tx}$
- Almost no missing hourly data

 (until recent government cutbacks!)

Compare Neighbors: 64 km

- Temp: 1 to 1: R² = 0.95
- Opaque Cloud: 1 to 1: R² = 0.88

Clouds to Summer Diurnal Cycle

- 40-yr climate
- T and RH are inverse
- Q has double maximum for BL transitions
- θ_{E} flatter
- Overcast (rain) [€]_□
 only outlier

Cloud Impacts

- Summer: Clouds reflect sunlight
 - no cloud, hot days; only slightly cooler at night
- Winter: Clouds are greenhouse
 - snow reflects low sun
 - clear & dry sky, cold days, very cold nights
- Fast transition with snow in 5 days

Betts et al. 2013

Annual Cycle: T_{max}, T_{min}, DTR, Precip

- Warm state: April – Oct
- Cold state:
 Dec Feb
- Transitions: Nov, Mar T_{max} ≈ 0°C
- Actually occur in <5 days

Annual Cycle: RH and ΔRH

- Warm state: April – Oct
- Cold state:
 Dec Feb
- Transitions: Nov, Mar T_{max} ≈ 0°C
- Transition

 in <5 days
 with snow

Prairie Warm Season Climate

12 stations: *Uniform climatology*<u>Tiny variability</u> in DTR and ΔRH

Surface Radiation Budget

• $R_{net} = SW_{net} + LW_{net}$ = $(SW_{dn} - SW_{up}) + (LW_{dn} - LW_{up})$

Define Effective Cloud Albedo (reflection)

- ECA = (SW_{dn}(clear) SW_{dn})/SW_{dn}(clear) Clear sky
- $SW_{net} = (1 \alpha_s)(1 ECA) SW_{dn}(clear)$ Reflected by surface, clouds

MODIS Calibrate Opaque Cloud data

Diurnal Temperature Range *Warms in daytime and cools at night*

- Daytime warming related to clouds: ECA
- Night-time cooling related to clouds: LW_{net}

Warm Season Climate

- Sun warms surface; grass, trees transpire (<u>λE</u>)
- Heating forms unstable boundary layer
- Clouds form at lifting condensation level, reflecting sunlight

Cold Season Climate

- Low sun is reflected by snow
- Under clear sky, surface long-wave cooling
- Stable boundary layer forms

Impact of Snow on Climate "Winter transitions"

- Composite about snow date
 - First lying snow in fall
 - Final snow-pack melt in spring
- Gives mean climate transition with snow
 - 13 stations with 40-50 years of data
- Snow cover and winter climate
- Snow cover cools surface 10-14K
 - Snow cover is a fast "<u>climate switch</u>"
 - Shift to 'LW cloud forcing' from 'SW cloud forcing'
 - Shift to 'Cold when clear' from 'Warm when clear'

14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

N-S Albedo through Winter

- Prairies (SK) α_s : 0.2 to 0.73
- Boreal forest α_s : 0.1 to 0.35
- MODIS: 10day, 250m, avg. to 50x50km to latitude bands

– <u>CCRS product</u>

Snowfall and Snowmelt

- Temperature falls 10C (18F) with first snowfall
- Similar change with snowmelt
- Snow reflects sunlight; reduces evaporation and water vapor greenhouse – changes 'local climate'

Betts et al. 2014

More snow cover - Colder temperatures

Betts et al. 2014

Recall: Annual Cycle: T_{max}, T_{min}

- Warm state: April Oct
- Transitions: Nov, Mar when T_{max} ≈ 0°C
- Cold state: Dec Feb

Snowfall is a 'Climate Switch'

- 5-day means: red: no snow; blue: snow (6000 days)
- With snow: T_{max}, T_{min} plunge
- Cloud coupling shifts in 5 days
- From 'Warm when clear' to 'Cold when clear'

Clouds: Summer & Winter Climate Opposite Impact

- Summer: Clouds reflect sunlight (soil absorbs sun)
 - no cloud, hot days; only slightly cooler at night
 - Convective boundary layer in daytime
- Winter: Clouds are greenhouse (snow reflects sun)
 - clear & dry sky, cold days and very cold nights
 - Stable boundary layer

Betts et al. 2013a

Role of LW_{dn} in Surface Radiation

- Snow reduces vapor flux
- Atmosphere cooler and drier
 - Less water vapor greenhouse
 - **-22 W/m**²
- Offset by 10% cloud increase with snow

Surface Radiation Balance

- Across snow transition
 - Surface albedo α_s increases: 0.2 to 0.73
 - LW_{dn} decreases
 - Opaque cloud increases
- SW_{net} falls 34 W/m²
- LW_{dn} falls 15 W/m²
- <u>Total 49 W/m²</u>
- Surface skin T falls: $\Delta T = -11K$ to balance (Stefan-Boltzman law: $\Delta(LW) = \Delta(\sigma T^4) = 4\sigma T^3 \Delta T$)

Annual crops and seasonal diurnal cycle

- Ecodistrict crop data since 1955
 - Ecodistricts mapped to soils
 - Typical scale: 2000 km² (500-7000)
- Ecozones
 - boreal plains ecozone
 - semiarid/subhumid prairie regional zones
- Shift from 'Summerfallow' (no crops) to annual cropping on 5 MHa (11 M acres)
 – Large increase in transpiration: Jun-Jul

13 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

Change in Cropping

- Ecodistrict mean for 50-km around station
- Saskatchewan: 25% drop in 'SummerFallow'
- Split at 1991- has summer climate changed?

Three Station Mean in SK

- Winter climate warmer but growing season
 - T_{max} cooler; RH moister
 - DTR and ΔRH seasonal structure changes

Impact on Convective Instability

Contrast Boreal Forest

No RH, DTR signal

Summary

- High quality dataset with <u>Opaque cloud</u>
- Understand cloud coupling to climate
- Distinct warm and cold season states
 - Sharp transitions with snow cover: $\alpha_s = 0.7$
 - Snow cover is a "climate switch"
 - From 'Warm when clear', convective boundary layer
 - To 'Cold when clear', with stable boundary layer
- Transpiration from crops changes climate
 - Cools and moistens summer climate
 - Lowers cloud-base and increases θ_E
 - (While winter climate has warmed)

Papers at http://alanbetts.com

Monthly, Seasonal, 50-yr Climate

- Observables
- <u>Opaque/reflective cloud</u> $\rightarrow R_n$
- **Precipitation + Drydown** → Evaporation
- 50-yr timescale see separation RH to precipitation and soil moisture T to opaque cloud and R_n
- Monthly, seasonal timescale blended
- Betts, A.K., R. Desjardins, D. Worth and B. Beckage (2014), Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. JGR, 2014JD022511, (minor revision)

11 stations: 53-yr JJA climate

- Precip to (R²)

 Cloud (0.56)
 P_{LCLtx} (0.83)
 RH_{tx} (0.71)
- Cloud to

 T_x (0.69)
- Separation
- Month: blend
- Daily: cloud

Monthly timescale: Regression

δDTR = K + A* δPrecip(Mo-2) + B * δPrecip(Mo-1) + C * δPrecip + D * δOpaqueCloud
(Month-2)(Month-1)(Month)(Month)

δDTR anomalies

	K	A	В	С	D	R ²	R ²	R ²
						All	Precip	Cloud
May	0±0.8		-0.37±0.05	-0.37±0.04	-1.10±0.05	0.73	0.41	0.66
Jun	0±0.7		-0.30±0.03	-0.32±0.02	-0.97±0.04	0.69	0.42	0.52
July	0±0.7	-0.20±0.03	-0.25±0.02	-0.33±0.03	-1.10±0.05	0.67	0.42	0.48
Aug	0±0.7	<u>-0.07±0.02</u>	<u>-0.21±0.03</u>	<u>-0.40±0.03</u>	<u>-1.24±0.04</u>	<u>0.79</u>	<u>0.46</u>	<u>0.71</u>
Sept	0±0.8		-0.22±0.03	-0.49±0.04	-1.27±0.04	0.82	0.43	0.75
Oct	0±0.8		-0.27±0.03	-0.70±0.07	-1.33±0.04	0.77	0.37	0.70

Monthly timescale: Regression

δRH_{tx} anomalies

Month	K	A (Mo-2)	B(Mo-1)	C(Mo)	D	R ²	R ²	R ²
						All	Precip	Cloud
May	0±3.6	1.30±0.38	1.47±0.22	2.07±0.17	4.75±0.20	0.72	0.46	0.62
Jun	0±3.6	0.69±0.23	1.26±0.15	1.96±0.12	4.36±0.22	0.68	0.47	0.48
July	0±4.1	0.84±0.18	1.71±0.12	1.81±0.17	4.40±0.30	0.59	0.43	0.33
Aug	0±3.6	<u>0.66±0.11</u>	<u>1.23±0.13</u>	<u>2.42±0.16</u>	<u>4.08±0.20</u>	<u>0.73</u>	<u>0.53</u>	<u>0.56</u>
Sept	0±3.5		1.40±0.13	2.10±0.18	4.35±0.16	0.75	0.45	0.63
Oct	0±4.3		1.28±0.19	5.02±0.39	4.58±0.23	0.67	0.44	0.53

How good is the regression fit?

- September $T_x \pm 1.4^{\circ}C$ $DTR \pm 0.8^{\circ}C$ $RH_{tx} \pm 3.5\%$ $P_{LCLtx} \pm 13hPa$
- Some extremes underestimated
 - (586 station-yrs)

Diurnal coupling: MJJA mean

- Internal coupling well-defined
 - Slopes less than 50-yr climate

MJJA Growing Season $\delta Y_{\sigma} = K_{\sigma} + B_{\sigma}^* \delta Precip(AMJJA)_{\sigma} + C_{\sigma}^* \delta OpaqueCloud_{\sigma}$

Variable: δY_{σ}	K _σ	Β _σ	C _σ	R^2_{σ}	σ(δΥ)
δT _{xσ}	0±0.7	-0.33±0.03	-0.52±0.03	0.52	1.11
δT _{mσ}	0±0.8	-0.21±0.05	-0.50±0.07	0.38	0.88
δDTR _σ	0±0.6	-0.55±0.03	-0.39±0.03	0.62	0.83
δRH _{txσ}	0±0.6	0.56±0.03	0.35±0.03	0.60	4.35
δRH _{mσ}	0±0.7	0.51±0.03	0.33±0.03	0.50	4.61
δRH _{tnσ}	0±0.9	0.38±0.04	0.24±0.04	0.27	4.52
δP _{LCLtxσ}	0±0.6	-0.56±0.03	-0.37±0.03	0.61	18.6
δQ _{txσ}	0±0.9	0.50±0.04	0.03±0.04	0.26	0.58
δθ _{Εtxα}	0±1.0	0.22±0.04	-0.31±0.04	0.09	1.95

MJJA Surface Water Balance

$E = P - R - \Delta TWS$

where **\Delta TWS** is change in Total Water Storage

 $P = P_m + \delta Precip(AMJJA)$ where mean $P_m = 1.94 \text{ mm/day}$ R/P = 0.5 (assumed: rivers managed) $\Delta TWS = \Delta TWS_m + F^* \delta Precip(MJJA)$

We estimate from GRACE data (2002-12) $\Delta TWS_m = -0.59(\pm 0.08) mm/day$ (72mm/122 days) $F = +0.56(\pm 0.09)$ (for AB, SK and MB) (F is 56% damping of precipitation anomalies)

GRACE seasonal dry-down

 $\Delta TWS_m = -0.59(\pm 0.08) mm/day (73mm/123 days)$ $F = +0.56(\pm 0.09) \quad (for AB, SK and MB)$ (F is 56% damping of precipitation anomalies)

Energy and Water "Budget"

- Cloud and precip. anomalies
 - Give anomalies of DTR, RH_{tx} (and T_{x} ..)
 - Cloud gives R_n anomalies
- Closures
 - Climate coupling: cloud to precip. (0.73)
 - GRACE estimate F = 0.56 gives E anomalies
- Gives BR, EF anomalies

Summary -2

- High quality dataset with <u>Opaque cloud</u> – Estimate SWCF, LWCF and R_n
- Map coupling of T, RH climate anomalies
 - To cloud on daily time-scale
 - To cloud and precip. on monthly/seasonal
 - MJJA: DTR, RH_x less dependent on cloud than T_x
- Dependence splits for 50-yr climate
 - T depends on cloud/radiation
 - RH and DTR depend on precip.
- Estimate evaporation using GRACE data to couple changes in TWS to precip. anomalies

Land-surface-atmosphere coupling: daily timescales

- Revisit daily timescale
 - BSRN data for SW_{dn}, LW_{dn}
 - ERA-Interim for clear-sky fluxes
 - ECA, LW_n coupling to DTR and ΔRH
- Stratify by cloud and
 - RH
 - Wind
 - Precipitation anomalies

Comparison of BSRN and ERI on clear days (>95% transmission)

ERI SWC_{dn} biased low by 10-20 W/m²

ERI LW_{dn} unbiased

Interdependence of ECA, LW_n, DTR, ΔRH

Calibrate Opaque Cloud to ECA and LW_n

MJJA

ECA = $0.04(\pm 0.11) + 0.025(\pm 0.003)$ OpaqueCloud + $0.0047(\pm 0.0003)$ OpaqueCloud² ($R^2=0.75$) LW_n = $-103(\pm 9) + 3.5(\pm 0.3)$ OpaqueCloud + $0.53(\pm 0.03)$ OpaqueCloud² ($R^2=0.88$) LW_n = $-131(\pm 7) + 3.1(\pm 0.2)$ OpaqueCloud + $0.43(\pm 0.02)$ OpaqueCloud² + $0.48(\pm 0.02)$ RH_m ($R^2=0.92$)

Regression fits to Opaque Cloud

Fits to Opaque Cloud

Partition: Cloud + RH

- 11 stations: 53600 days in June, July, August
- Low RH: warmer T_x and DTR; low precip.
- High RH: higher θ_{Etx}

Partition: Cloud + Windspeed

- 11 stations: 53600 days in June, July, August
- Low wind: lower T_n, higher DTR, RH_{tn}
- Low wind: higher Q_{tx}, θ_{Etx}

T_n: Windspeed and Cloud

Slope of T_n with wind/cloud/LW_n

Partition: Cloud + δPrecipWT

Remap to ECA and LW_n

Summary - 3

- Revisit daily timescale
 - BSRN data for SW_{dn}, LW_{dn}
 - ERA-Interim for clear-sky fluxes
 - ECA, LW_n coupling to DTR and ΔRH
- Stratify by cloud and
 - RH
 - Wind
 - Precipitation anomalies
- Ongoing.. Work in progress

DTR linear on ECT (1-ECA)

- Prairie: Bratt's Lake (BSRN data)
- Solar array: Rutland VT (Licor: LI-200SA)