Understanding land-atmosphere coupling

Alan K. Betts

akbetts@aol.com

http://alanbetts.com

Co-authors: Ray Desjardins, Devon Worth, Darrel Cerkowniak Agriculture and Agri-Food Canada Shusen Wang and Junhua Li Natural Resources Canada

> ECMWF July 30, 2014

Water in the Climate System

- Vapor, liquid and ice
 - Ocean and land
- Latent heat of phase changes
 - LH release drives clouds and storms
 - Precip, soil moisture, stomatal control EF=λE/(R_n-G)
- Vapor IR absorption (WV greenhouse)
 Clouds 'black' in IR
- SW reflectivity of clouds and snow

- Effective cloud albedo, surface albedo with snow

14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, <u>Opaque Cloud</u> by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

Prairie Station Locations

Station Name	Station ID	Province Latitud		Longitude	Elevation (m)	
Red Deer*	3025480	Alberta	52.18	-113.62	905	
Calgary*	3031093	Alberta	51.11	-114.02	1084	
Lethbridge†	3033880	Alberta	49.63	-112.80	929	
Medicine Hat	3034480	Alberta	50.02	-110.72	717	
Grande Prairie*	3072920	Alberta	55.18	-118.89	669	
Regina*	4016560	Saskatchewan	50.43	-104.67	578	
Moose Jaw	4015320	Saskatchewan	50.33	-105.55	577	
Estevan*	4012400	Saskatchewan	49.22	-102.97	581	
Swift Current†	4028040	Saskatchewan	50.3	-107.68	817	
Prince Albert*	e Albert* 4056240 Saskatchewan		53.22 -105.67		428	
Saskatoon*	4057120	Saskatchewan	52.17	-106.72	504	
Portage-Southport	5012320	Manitoba	49.9	-98.27	270	
Winnipeg*†	5023222	Manitoba	49.82	-97.23	239	
The Pas*†	5052880	Manitoba	53.97	-101.1	270	

Outline

Part 1: Review of published papers

- Clouds and Diurnal Cycle over seasons
 - Betts et al (2013a)
- Annual crops and seasonal diurnal cycle
 - Betts et al (2013b)
- Winter snow transitions and climate
 - Betts et al (2014a)

Part 2: Work in progress

- Climate coupling between temperature, humidity, precipitation and cloud cover
- Land-atmosphere coupling in the warm season on daily timescales
 - Coupling to SW and LW; wind, RH

References

- Betts, A. K. (2009), Land-surface-atmosphere coupling in observations and models. *J. Adv. Model Earth Syst., Vol. 1, Art. #4,* 18 pp., doi: 10.3894/JAMES.2009.1.4
- Betts, A.K., R. Desjardins and D. Worth (2013a), Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. *J. Geophys. Res. Atmos., 118,* 1–19, doi:10.1002/jgrd.50593
- Betts, A.K., R. Desjardins, D. Worth and D. Cerkowniak (2013b), Impact of land-use change on the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos., 118, 11,996–12,011, doi:10.1002/2013JD020717
- Betts, A.K., R. Desjardins, D. Worth, S. Wang and J. Li (2014), Coupling of winter climate transitions to snow and clouds over the Prairies. J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021168
- <u>http://alanbetts.com</u>

Methods: Analyze Coupled System

- Seasonal diurnal climate by station/region
- 220,000 days of excellent data (600 years)
- Composite by <u>daily mean opaque cloud</u>
 Calibrate SWCF, LWCF against radiation data
- Change of seasonal climate with cropping

 'Summerfallow' to annual crops on 5MHa in 30 yrs
- Composite across snow transitions

 First snow in fall; spring melt of snowpack
 Winter climate and % days snow cover
- Link T, RH to precipitation and cloud cover on monthly and seasonal timescales

Clouds and Diurnal Climate

- Reduce hourly data to
 - daily means: T_{mean} , RH_{mean} etc
 - data at T_{max} and T_{min}
- Diurnal cycle climate
 - DTR = T_{max}-T_{min}

•
$$\Delta RH = RH_{tn} - RH_{tx}$$

Almost no missing hourly data (until recent government cutbacks!)

 $(T_x - T_n)$

Compare Neighbors: 64 km

- Daily means
- T: R²>0.95
- DTR: 1 to 1
- RH poorly correlated in winter
- Opaque Cloud
 1 to 1

Calibration of Opaque Cloud to Effective Cloud Albedo (ECA)

- SW_{dn} data
 - Lethbridge, Swift
 Current, The Pas,
 Winnipeg
 - 82 station-years
- Tight relationship
 - OpaqueCloud to ECA
 - NDJF a little flatter

Clouds to Summer Diurnal Cycle

- 40-yr climate
- T and RH are inverse
- Q has double maximum for BL transitions
- θ_{E} flatter
- Overcast (rain) [€]_□
 only outlier

Cloud Impacts

- Summer: Clouds reflect sunlight
 - no cloud, hot days; only slightly cooler at night
- Winter: Clouds are greenhouse
 - snow reflects low sun
 - clear & dry sky, cold days, very cold nights
- Fast transition with snow in 5 days

Betts et al. 2013

Annual Cycle: T_{max}, T_{min}, DTR, Precip

- Warm state: April – Oct
- Cold state:
 Dec Feb
- Transitions: Nov, Mar T_{max} ≈ 0°C
- Actually occur in <5 days

Annual Cycle: RH and ΔRH

- Warm state: April – Oct
- Cold state:
 Dec Feb
- Transitions: Nov, Mar T_{max} ≈ 0°C
- Transition

 in <5 days
 with snow

Prairie Warm Season Climate

12 stations: *Uniform climatology*<u>Tiny variability</u> in DTR and ΔRH

Surface Radiation Budget

• $R_{net} = SW_{net} + LW_{net}$ = $(SW_{dn} - SW_{up}) + (LW_{dn} - LW_{up})$

Define Effective Cloud Albedo (reflection)

- ECA = (SW_{dn}(clear) SW_{dn})/SW_{dn}(clear) Clear sky
- $SW_{net} = (1 \alpha_s)(1 ECA) SW_{dn}(clear)$ Reflected by surface, clouds

MODIS Calibrate Opaque Cloud data

Fit ECA and LW_{net} to Opaque Cloud

NDJF: ECA = 0.1056 + 0.0404 Cloud + 0.00158 Cloud² SO-MA: ECA = 0.0588 + 0.0365 Cloud + 0.00318 Cloud² MJJA: ECA = 0.0681 + 0.0293 Cloud + 0.00428 Cloud²

Gives SW_{net} from SW_{dn} (clear) and albedo α_s

NDJF: $LW_{net} = -63.0 + 3.14$ Cloud + 0.193 Cloud² SO-MA: $LW_{net} = -91.5 + 4.43$ Cloud + 0.267 Cloud² MJJA: $LW_{net} = -100.1 + 4.73$ Cloud + 0.317 Cloud²

Diurnal Temperature Range

- Warms in daytime and cools at night
- Daytime Driver:
 R_{netD}
- Nighttime driver: LW_{net}

(Betts JGR 2006)

Impact of Snow on Climate "Winter transitions"

- Composite about snow date
 - First lying snow in fall
 - Final snow-pack melt in spring
- Gives mean climate transition with snow
 - 13 stations with 40-50 years of data
- Snow cover and winter climate
- Snow cover cools surface 10-14K
 - Snow cover is a fast "<u>climate switch</u>"
 - Shift to 'LW cloud forcing' from 'SW cloud forcing'
 - Shift to 'Cold when clear' from 'Warm when clear'

14 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

N-S Albedo through Winter

- Prairies (SK) α_s : 0.2 to 0.73
- Boreal forest α_s : 0.1 to 0.35
- MODIS: 10day, 250m, avg. to 50x50km to latitude bands

– <u>CCRS product</u>

Snowfall and Snowmelt *Winter and Spring transitions*

- Temperature falls/rises about 10K with first snowfall/snowmelt
- Snow reflects sunlight; reduces evaporation and water vapor greenhouse – loss of snow warms 'local climate'
 - Same feedbacks that are speeding Arctic ice melt in summer
 - Local <u>climate switch</u> between warm and cold seasons

Betts et al. 2014

Fall Snow Transition Climatology

- T_x , T_m , T_n fall about 10K
- Cloud peaks with snow; increases ≈10%
- Snow date: Nov 15 ± 3 days

Snow-melt Transition Climatology

- SW Alberta: T increase about 11K
- Saskatchewan: T increase about 10K
- 3 northern stations: increase 10K, slower
- Melt date: March 12–April 11

Snow Cover: Winter Climatology

- Alberta: 79% of variance
- Slopes
 - T_x -16.0(± 0.6) K
 - T_m -14.7 (± 0.6) K
 - T_n -14.0 (± 0.7) K

<u>10% fewer snow days</u> = 1.5K warmer Coupling to Cloud Cover Across Snowfall

- Mid-November
- 5-day means (6000 days)
 - red: no snow
 - blue: snow
- With snow
 - T_x, T_n plunge
- Cloud coupling shifts in 5 days
 - from 'Warm when clear' to 'Cold when clear
 - "SWCF to LWCF"

Clouds: Summer & Winter Climate Opposite Impact

- Summer: Clouds reflect sunlight (soil absorbs sun)
 - no cloud, hot days; only slightly cooler at night
 - Convective boundary layer in daytime
- Winter: Clouds are greenhouse (snow reflects sun)
 - clear & dry sky, cold days and very cold nights
 - Stable boundary layer

Betts et al. 2013a

Role of LW_{dn} in Surface Radiation

- Snow reduces vapor flux
- Atmosphere cooler and drier
 - Less water vapor greenhouse
 - **-22 W/m**²
- Offset by 10% cloud increase with snow

Surface Radiation Balance

- Across snow transition
 - Surface albedo α_s increases: 0.2 to 0.73
 - LW_{dn} decreases
 - Opaque cloud increases
- SW_{net} falls 34 W/m²
- LW_{dn} falls 15 W/m²
- <u>Total 49 W/m²</u>
- Surface skin T falls: $\Delta T = -11K$ to balance (Stefan-Boltzman law: $\Delta LW = \Delta(\sigma T^4) = 4\sigma T^3 \Delta T$)

Annual crops and seasonal diurnal cycle

- Ecodistrict crop data since 1955
 - Ecodistricts mapped to soils
 - Typical scale: 2000 km² (500-7000)
- Ecozones
 - boreal plains ecozone
 - semiarid/subumid prairie regional zones
- Shift from 'Summerfallow' (no crops) to annual cropping on 5 MHa (11 M acres)

- Large increase in transpiration: Jun-Jul

13 Prairie stations: 1953-2011

- Hourly p, T, RH, WS, WD, Opaque Cloud by level, (SW_{dn}, LW_{dn})
- Daily precipitation and snowdepth
- Ecodistrict crop data since 1955
- Albedo data (MODIS/CCRS: 250m, after 2000)

Change in Cropping

- Ecodistrict mean for 50-km around station
- Saskatchewan: 25% drop 'SummerFallow'
- Split at 1991- has summer climate changed?

Three Station Mean in SK

- Growing season
 - T_{max} cooler; RH moister
 - DTR and ΔRH seasonal structure changes

Impact on Convective Instability

Contrast Boreal Forest

No RH, DTR signal

Summary (Part 1)

- High quality dataset with <u>Opaque cloud</u>
- Understand cloud coupling to climate
- Transpiration from crops changes climate
 - Cools and moistens summer climate
 - Lowers cloud-base and increases θ_{E}
- Distinct warm and cold season states
 - Sharp transitions with snow cover: $\alpha_s = 0.7$
 - Snow cover is a "climate switch"
 - From 'Warm when clear', convective boundary layer
 - To 'Cold when clear', with stable boundary layer

Papers at http://alanbetts.com

Transformative Concepts

- Snow as climate switch
- <u>Opaque/reflective cloud</u> - SWCF, LWCF \rightarrow R_n
- Diurnal climate analysis of T, RH
 - Dominated by cloud/R_n
 - BUT: Radiation only analysis
 - Because no soil moisture, or EF

Monthly, Seasonal, 50-yr Climate

- Observables
- <u>Opaque/reflective cloud</u> $\rightarrow R_n$
- Precipitation coupled to Evaporation
- 50-yr timescale see separation RH to precipitation and soil moisture T to opaque cloud and R_n
- Monthly, seasonal timescale blended

11 stations: 53-yr JJA climate

- Precip to (R²)

 Cloud (0.56)
 P_{LCLtx} (0.83)
 RH_{tx} (0.71)
- Cloud to

 T_x (0.69)
- Separation
- Month: blend
- Daily: cloud

Diurnal cycle tightly coupled

- ΔRH to DTR
- 2.77 %/K
 (R² = 0.90)

Monthly timescale: Regression

δDTR = K + A* δPrecip(Mo-2) + B * δPrecip(Mo-1) + C * δPrecip + D * δOpaqueCloud
(Month-2)(Month-1)(Month)(Month)

δDTR anomalies

	K	A	В	С	D	R ²	R ²	R ²
						All	Precip	Cloud
May	0±0.83		-0.35±0.05	-0.37±0.04	-1.10±0.05	0.69	0.39	0.62
Jun	0±0.70		-0.30±0.03	-0.32±0.02	-0.97±0.04	0.69	0.42	0.52
July	0±0.73	-0.20±0.03	-0.25±0.02	-0.32±0.03	-1.10±0.05	0.67	0.42	0.48
Aug	0±0.74	<u>-0.07±0.02</u>	<u>-0.21±0.03</u>	<u>-0.40±0.03</u>	<u>-1.24±0.04</u>	<u>0.79</u>	<u>0.46</u>	<u>0.71</u>
Sept	0±0.77		-0.22±0.03	-0.49±0.04	-1.27±0.04	0.82	0.43	0.75
Oct	0±0.78		-0.27±0.03	-0.70±0.07	-1.33±0.04	0.78	0.37	0.70

Monthly timescale: Regression

δRH_{tx} anomalies

Month	K	A (Mo-2)	B(Mo-1)	C(Mo)	D	R ²	R ²	R ²
						All	Precip	Cloud
May	0.0±3.6	1.13±0.38	1.41±0.23	2.01±0.17	4.67±0.20	0.70	0.43	0.61
Jun	0.0±3.6	0.69±0.23	1.26±0.15	1.96±0.12	4.36±0.22	0.68	0.47	0.48
July	0.0±4.1	0.84±0.18	1.72±0.12	1.80±0.17	4.42±0.30	0.59	0.43	0.33
Aug	0.0±3.6	<u>0.66±0.11</u>	<u>1.23±0.13</u>	<u>2.42±0.16</u>	<u>4.08±0.20</u>	<u>0.73</u>	<u>0.53</u>	<u>0.56</u>
Sept	0.0±3.5		1.40±0.13	2.10±0.18	4.35±0.16	0.75	0.45	0.63
Oct	0 ± 4.3		1.30±0.19	5.06±0.38	4.61±0.22	0.67	0.44	0.53

Monthly anomalies (MJJA: 2346 months)

- Less cloudy and less rain (this month and last)
 - δT_x warmer (cloud mostly) (R² = 0.55)
 - $\delta DTR \text{ larger (both)} \qquad (R^2 = 0.72)$
 - $\delta RH drier (both) \qquad (R^2 = 0.68)$

How good is the regression fit?

- September $T_x \pm 1.4^{\circ}C$ $DTR \pm 0.8^{\circ}C$ $RH_{tx} \pm 3.5\%$ $P_{LCLtx} \pm 13hPa$
- Some extremes underestimated
 - (586 station-yrs)

Diurnal coupling: MJJA mean

- Internal coupling well-defined
 - Slopes ≈ 60% of 50-yr climate

MJJA Surface Water Balance

$E = P - R - \Delta TWS$

where **\Delta TWS** is change in Total Water Storage

 $P = P_m + \delta Precip(AMJJA)$ where mean $P_m = 1.92 \text{ mm/day}$ R/P = 0.5 (assumed: rivers managed) $\Delta TWS = \Delta TWS_m + F^*\delta Precip(AMJJA)$

We estimate from GRACE data (2002-12) $\Delta TWS_m = -0.59(\pm 0.08) mm/day$ (72mm/122 days) $F = +0.56(\pm 0.09)$ (for AB, SK and MB) (F is 56% damping of precipitation anomalies)

GRACE seasonal dry-down

 ΔTWS_m = - 0.59(±0.08)mm/day (72mm/122 days) $F = +0.56(\pm 0.09)$ (for AB, SK and MB) (F is 56% damping of precipitation anomalies)

Energy and Water "Budget"

- Cloud and precip. anomalies
 - Give anomalies of DTR, RH_{tx} (and T_{x} ..)
 - Cloud gives R_n anomalies
- Closures
 - Climate coupling: cloud to precip. (0.73)
 - GRACE estimate F = 0.56 gives E anomalies
- Gives BR, EF anomalies

Summary (Part 2)

- High quality dataset with <u>Opaque cloud</u> – Estimate SWCF, LWCF and R_n
- Map coupling of T, RH climate anomalies
 - To cloud on daily time-scale
 - To cloud and precip. on monthly/seasonal
- Dependence splits for 50-yr climate
 - T depends on cloud/radiation
 - RH and DTR depend on precip.
- Estimate evaporation using GRACE data for coupling changes in TWS to precip. anomalies

Partition Further

11 stations: 37600 days in July, August
 – Precip–RH regression gives Evap. anomalies?

DTR linear on ECT (1-ECA)

- Prairie: Bratt's Lake (BSRN data)
- Solar array: Rutland VT (Licor: LI-200SA)

Diurnal Climate Change

- Annual cycle in Saskatchewan
- DTR change
- RH_{mean} up
- Cloud peak

6 Stations in Saskatchewan

- T_x,T_m,T_n fall about 10K
- ΔRH falls to <10%, afternoon RH rises
- Cloud increases 10% (peaking with snow)
- Snow date: Nov 15 ± 15 days

Snow Cover: Fall and Spring Climatology

- Fraction of days with snow cover drives much of interannual T variability
- More in spring than fall
- T- Slopes: 11, -8, -11, -11

Daily Mean Climate vs Long-term Diurnal Mean

- Definitions
 - DTR = $T_x T_n$
 - $\Delta RH = RH:T_x RH:T_n$

Monthly mean diurnal cycle

•
$$DTR_h = T_{xh} - T_{nh}$$

• $\Delta RHh = RH_{xh} - RH_{nh}$

Radiatively forced signal small in winter compared to daily advection

Daily Mean Climate vs Monthly Diurnal Mean Climate

- Daily variability in winter large
- Monthly variability small: DTR_h quasi-linear

$T_{\text{bias}} = (T_{\text{max}} + T_{\text{min}})/2 - T_{\text{mean}}$

Opposite in warm and cold season