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Climate of Vermont
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Diurnal Temperature Range
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* Earth sustains life
 Weather changes fast
» Climate changes slowly

* Greenhouse gases keep
Earth warm

* Burning fossil fuels — coal,
oil and gas — is having a big
effect on climate by
increasing greenhouse
gases: CO, and H,0

January 2, 2012: NASA
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What Is Happening to Vermont?

PAST 40/50 years (anthropogenic forcing detectible)

Warming twice as fast in winter than summer
Winter severity decreasing
Lakes frozen less by 6.9 (¥1.5) days / decade

Growing season longer by 3.7 (¥1.1) days /
decade

Spring coming earlier by 2-3 days / decade

Extremes increasing
Evaporation increases with T
More ‘quasi-stationary weather patterns’



Vermont Temperature Trends
1961-2008
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water vapor) drive larger Note: trends since 1961: early
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Lake Freeze-up & Ice-out Changing
Frozen Period Shrinking Fast

Ice-out (Day of Year)
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* Ice-out earlier by 2.9 (¥1.0) days / decade
 Freeze-up later by 3.9 (¥1.1) days / decade
Rivers and soils similar?



Winter Hardiness Zones - Northeast

Change in
16 years

5: -20 to -10°F

1990 2006
Zone 6: -10 to 0°F
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Latest detailed
map

 USDA : VT
Hardiness Zone
Map 1976-2005
[mean 1990]

e A trend of half a
zone in 16-20 years
is +2.5-3.1°F/decade
[triple the rise of
winter mean]

e http://planthardines
s.ars.usda. qovIPHZ
MWeb/

mgb\r ]
Pﬂﬁucm EGEW :
o BOph SER Unbe gty

Plant Hardiness
Zone Map

Vermont

Average Annual Extreme
Minimum Temperature
19762005

Temp (F1 Zone  Temp (C)

35toa0 (5| 97210344
S0to 25 - F44t0-317
25to 20 - 3 7to-259
20to 45 |85 | 28910261
A5ta 410 “ 26110233

0 510 20

il
e | 0mEters
010 20 40



http://planthardiness.ars.usda.gov/PHZMWeb/
http://planthardiness.ars.usda.gov/PHZMWeb/
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Lilac first leaf, first bloom (Day of year)

Lilac Leaf and Bloom
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 Leaf-out -2.9 days/decade; Bloom -1.6 days/decade

« Large year-to-year variation related to temperature:
4 to 5 days/ °C
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Day of year

Lilac Leaf-out and Ice-out Coupled
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e Lilac leaf and lake ice-out both depend on Feb.
Mar. and April temperatures

 Trends indicate earlier spring




Sugar Maples In Spring
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Last-freeze (Day of year)

First and Last Frosts Changing
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Growing season for frost-sensitive plants
increasing 3.7 (¥1.1) days / decade

* A help for growing “local food”



Shrinking Winter: Pittsford, VT

(Freeze-up used to be mid-November)

g < g

January 7, 2007 January 10, 2008

December 2006: Warm Fall:
* Warmest on record  Record Arctic sea-ice melt

* Show cover in December,
ground unfrozen



October 2011- March 2012

« Warmest 6 months on record

My garden frozen only 67 days

* No permanent show cover
west of Green Mntns

« Contrast snowy winter 2010-11

Oct 2011-Mar 2012 Statewide Ranks

National Climatic Data Center/NESDIS/NOAA
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Early Spring: Daffodils, Forsythia
79°F on March 22 201 2

Pittsford Vermont Pittsford Vermont
3/22/12 3/24/12



This Year Exceptionally Warm

e Burlington Area Extremes

 Highest Average
Temperature degrees F

« Days: 9/1/2011 - 8/31/2012
e Length of period: 365 days
 Years: 1850-2012
 Rank Value Ending Date

« 1 504 8/31/2012

e 2 48.4 8/31/2002,
8/31/1949

48.2 8/31/2010
48.0 8/31/1999
47.9 8/31/2006

47.8 8/31/1991,
8/31/1995

« 9 47.6 8/31/1899,
8/31/1903

(Scott Whittier: NWS-BTV)
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National Climatic Data Center/NESDIS/NOAA

Temperature ) . BN

1 = Coldest
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http://www.ncdc.noaa.gov/temp-and-precip/maps.php



http://www.ncdc.noaa.gov/temp-and-precip/maps.php

Vermont Winter 2006
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Sun s low; snw reflcts sunlight, except where there
are trees - shadows

Sunlight reflected, stays cold; little evaporation, clear
sky; earth cools to space

Positive feedback: Less snow, warmer winters (2012)



Arctic Sea Ice Loss Has Accelerated

ez Sept 16, 2007 iiEe  Sept 11,2012

e Positive
feedbacks
speed
melting

 Less ice,
less sunlight
reflected

 More evapor-
ation, larger
water vapor
greenhouse
effect

Total extent = 4.1 million sq km

At the end of

* New Record Ice-loss: 2012 (www.nsidc.org) . nov. 2011

Hudson Bay

* most ice now thin (3-4ft) and only 1-year-old s st#rearly

ice-free.

e Open water in Oct. Nov. favors warmer Fall
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Sealce Trends -

- Sea ice is thinning rapidly ~
 Observed September iﬁs
decline appears to be gm
faster than IPCC-AR4 .
climate model projections °

 ARS projections should be faster!
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June 2012 show cover minimum

Northern Hemisphere Snow Cover Anomaly
June 2012

NSIDC courtesty Rutgers University Snow Lab

- + + +

-100 -75 -50 -25 0 +75  +100

Percent diffterence from 1971 - 2000 average June snow cover extent

Milliocn Square km

MNorthern Hemisphere Snow Cover Anomaly
June 1967 - 2012

Steep fall |
‘ | | | since 2003 |
N | Il I 1 | |

NSIDC courtesy Rutgers University Snow Lab
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« New minimum by 106
km?2 (1971-2000 ref)



Sea lce Trends

* Seaice is thinning rapidly
* Now mostly 1-year-old ice

 Observed September
decline appears to be
steeper in last decade

Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS)
Minimum PIOMAS Arctic sea ice volume through 8/25/2012
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Spring Climate
Transition

 Before leaf-out s
Little evaporation— Dry atmosphere, Iow humldlty

— Low water vapor greenhouse
— Large cooling at night

— Large diurnal temp. range
giving warm days, cool nights and frost

o After leaf-out

Large evaporation — Wet atmosphere, low cloudbase
— Small cooling at night
— Reduced maximum temperature

— Reduced chance of frost
Spring is coming earlier: 2012 was extreme



Summer dry-down

Wet in spring
Soil moisture falls:
summer dry-down

Low humidity &
little rain

Can lock-in drought in
central US: as 2012




Recently Many Wet Summers
in Vermont

. 2004, 2006, 2008, 2009, (2010), 2011 all wet
* Direct fast evaporation off wet canopies

* Positive evaporation-precipitation feedback, coupled
to synoptic system frequency



Fall Climate
Transition

Vegetation postpones first killing frost

Deciduous trees still evaporating: moist

air with clouds Clear dry blue sky after
Water vapor & cloud greenhouse reduces  frost. Forest evaporation
cooling at night and prevents frost has ended; water vapor

Till one night, dry air advection from north greenhouse is reduced, so

gives ﬁ':St hard frost. _ Earth cools fast to space at
Vegetation shuts down, leaves turn, skies night

become clearer and frosts become
frequent

The opposite of what happens in
Spring with leaf-out!

Later frost: Growing season getting longer



PARTS PER MILLION

Carbon Dioxide Is Increasing
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320

Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory

Winter 4

Summer {

Upward trend
+ 2ppm/ year

January 2011
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2009 Was “Good” for the Earth

Fossil Fuel Emissions: Actual vs. IPCC Scenarios
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‘ Carbon
T ]

Back on growth:

10

=i (bsarved

O Projected
A1B Models Average
G 4 == A1FI Models Average
A1T Models Average
- A2 Models Average

e 1 Models Average

8 B2 Models Average
= = « Full range of IPCC
individual scenanos
wead for cimate
7 projections

Fossil Fuel Emission (PgCy-)

2010, 2011

Emission
Scenarios

- 4%lyear

1990 1995 2000 2005
Time (y)

Updated from Raupach et al. 2007, PNAS; Data: Gregg Mariand, Thomas Bodan-CDIAC

2010; International Monetary Fund 2010

2010 2015

Q. e B O WERP,
N




Rise of Greenhouse Gases (GHG)
Shift Energy Balance of Planet

 The atmosphere is transparent to light from the
sun, but not to infrared radiation from the earth

 GHG: H,0, CO,, CH,, O;, CFCs absorb and
reradiate IR from the surface, giving climate
suitable for life by warming planet 30°C

» CO, rise alone has a small
warming effect

BUT...




Water, Snhow & Ice Give Positive
Radiative Feedbacks

 As Earth warms, evaporation and water vapor
increase and this is 3X amplifier on CO, rise

« As Earth warms, snow & ice decrease and
reduced SW reflection amplifies warming in
Arctic in summer and mid-latitudes in winter

* Doubling CO, will warm globe about 3°C (5°F)

e Much more in the North and over land, which
responds faster than oceans



Climate Change Projections

 IPCC 2007 (Fourth Assessment - AR4)

 ARS in progress with improved models —expect
no large change

* Higher resolution: Improved aerosols, sea-ice & carbon

cycle (probably slightly increased climate sensitivity
and wider range between models)



Predicted Change in Temperature
2020-2029 and 2090-2099, relative to 1980-1999 (°C)

(We did
nothing for
the last 20

years)

“Committed”

(We could
halve this if
we act now)

Still up to us!

[ [T [T
005115225335445555665775 [°C]




Higher Emissions Scenario® Projected Temperature Change (°F)
from 1961-1979 Baseline
Mid-Century (2040-2059 average) End-of-Century (2080-2099 average)

USGCRP
(2009) - p29

e Mean of 16
CMIP3

I I I O d e | S Lower Emissions Scenario® Projected Temperature Change (°F)

from 1961-1979 Baseline
Mid-Century (2040-2059 average) End-of-Century (2080-2099 average)

1 2 3 4 5§ & T & 9 10 =10
The mapz on thiz page and che previous page are bared on projection: of furure cemperature by 16 of the Coupled Madel
Ineercamparizon Projece Three (CHMIP3) climace models uzing owo emizzions scenarios from the Intergovernmental Panel on Climate
Change (IFCC), Specal Report on Emission Scenarios (SRES) The “lower” seenario here is B 1, while the “higher™ is A2 The brackets
USGCRP (2009) -pp 29 on the chermometers represent the likely range of model projections, chough lewer or higher outcemes are possible. Additional
informacion on chese scenaries Is on pages 22 and 23 in che previous seccion, Global Qimaete Clonge. These maps, and others in chis
reporc, show projecclons ac nadonal, reglonal, and sub-reglonal scales, using well-escablizhed cechniques."®



USGCRP
(2009) — p31

e More
confidence
where shaded

e Northern
areas wetter

Projected Change in North American Precipitation
by 2080-2099

. . - RE, 3
Summer e Fall *% | _ aiee-
Mg -
Percent Change
BT [ T TTSmm——
<4035 30 -25 -20 15 -0 5 0 5 10 15 20 25 30 35 »40
Less Precipitation More Precipidation

~rpie AR

The maps thow projeceed future changes In preciplieacion relagive to che recent paze az timulazed by |5 elimaze models. The simulacion:
are for lace thiz century, under a higher emiszlons scenarlo.' For example, In the spring, climace models agree chac norchern areas are
likely to yet weeter, and 1outhern arear drier. There iz less confidence in exactly where the tranzition beeween wetter and drier arear
will oecur, Confldence In dhe projected changes Is highest in che hatched areas.



Observed Changes: Total Precip
and Heavy Precip. (upper 1%)

Observed Change in Annual Average Precipitation lncreasesf I_n A_mounts of Very Heavy
1958 to 2008 Precipitation (1958 to 2007)

12%
e
[ ]
%
noaamncDe!! o .
Percent Change st
BN [ [ T T Percentage Change in Very Heavy Precipitation
<-40-35 -30 -25 -20 -15 -10 -5 O 5 10 15 20 25 30 35 >40 ] — ] —1 =1 ]

While U.S. annual average precipitation has increased about 5 percent over the past 50 0-10% 10-20% 20-30% 30-40% 40-30%

=60%
years, there have been important regional differences as shown above.

Ipdated from Groisman et all?
The map shows percent increases in the amount falling
in very heavy precipitation events (defined as the heavi-
est 1 percent of all daily events) from 1958 to 2007 for
each region. There are clear trends toward more very
heavy precipitation for the nation as a whole, and par-
ticularly in the Northeast and Midwest.



Vermont’s Future
with High and GHG Emissions

Migrating State
Climate

Changes in average sum-
mer heat index—a measure
of how hot it actually feels,

What

abO ut given temperature and
- 5 humidity—could strongly
Sk"ng . affect quality of life in the

future for residents of
Vermont. Red arrows track
what summers in Yermont
could feel like over the

. course of the century
Business under the higher-emissions
as usual scenario. Yellow arrows
track what summers inthe
state could feel like under
the lower-emissions

scenario. NECIA
2007

What
about
tropics?

B HigherEmissions Scenario

Liweer-Emissions Scenario




Sea-level Rise Will Eventually
Flood Coastal Cities

 Late 20t"-century sea-level rise: 1 foot /
century

e 215t century: Likely to triple to 3 - 4 feet /
century

 And continue for centuries (accelerating
for business as usual)

* http://www.nature.com/news/us-northeast-coast-is-hotspot-for-rising-
sea-levels-1.10880



Many Challenges Face Us

Extreme weather: Floods, fires, & drought
- 32 weather disasters >$1B in 2011

Melting Arctic and permafrost—
methane release is positive feedback

Ecosystem collapse, including perhaps forest
and ocean ecosystems

Collapse of unsustainable human population



Extreme Weather (precip.)

Precip. is condensation of atmospheric water
vapor (large latent heat release)

Saturation vapor pressure at cloud-base
increases steeply with temperature (6%/°C)

More latent heat organizes storms, increasing
convergence of vapor

Quasi-stationary large-scale flow means longer
rain events in low-pressure convergent regions,
and longer droughts in high-pressure divergent
regions

As climate changes, quasi-stationary large-
scale modes appear to be more frequent

Wet surface: more evaporation and runoff



2011 Vermont Floods

Record spring flood on Lake Champlain
Record floods following TS Irene

 Record wet March-August, 2011: OH to VT
(but record drought in TX & NM)

 Quasi-stationary pattern for 6 mos

March-August 2011 Statewide Ranks March-August 2011 Statewide Ranks

National Climatic Data Center/NESDIS/NOAA National Climatic Data Center/NESDIS/NOAA

Precipitation Ll Temperature g
1 = Driest . 1 = Coldest
117 = Wettest i i 117 = Warmest
Record Much Below Near Above Much Record Be N Above Much Record
Driest Below Normal Normal Normal Above Wettest @ Coldest  Below ~  Normal Normal  Normal Above  Warmest
Normal Normal Normal




Winooski River 2011

e Two classic VT flood situations

 Spring flood: heavy rain and warm weather,
melting large snowpack

- 70F (4/11) and 80F(5/27) + heavy rain
- record April, May rainfall: 3X at BTV

* |rene flood: tropical storm moved up east of
Green Mountains - dumping 6ins rain on wet
soils (Floyd on 9/17/1999 had similar rain -
but with dry soils there was less flooding)



Discussion

This talk http://alanbetts.com/research

VTCCAdaptClimateChangeVTBetts10-29.pdf
http://www.anr.state.vt.us/anr/climatechan
ge/Adaptation.html

Vermont Climate Change Indicators

Seasonal Climate Transitions in New England


http://alanbetts.com/research
http://www.anr.state.vt.us/anr/climatechange/Adaptation.html
http://www.anr.state.vt.us/anr/climatechange/Adaptation.html
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Are Temperature Extremes a
Sign of Global Warming?

(a) Probability Distribution of Northern Hemisphere Land Summer Temperature Anomalies

2001-2011

1251—1980 1981—1991
[(Base Penod) ¢ 1r

. :
-54-31-2-1012 3 45 4-3-2-10123 45 4-3-2-101 23 45 4-3-2-1012 3 45

(Hansen, 2012)

 Frequency of occurrence (vertical axis) of local June-July-
August temperature anomalies for Northern Hemisphere land in
units of local standard deviation (horizontal axis). The normal
(gaussian) distribution bell curve is shown in green.

 Large increase in anomalies > +30 is global warming

(£ 3o includes 99.7% of data in 1951-1980 base period)



USGCRP Northeast.pdf (2009)

 Since 1970, the annual average temperature in the
Northeast has increased by 2°F, with winter
temperatures rising twice this much

« Warming has resulted in many other climate-related
changes including:

 More frequent days with temperatures above 90°F

A longer growing season

* Increased heavy precipitation

 Less winter precipitation falling as snow and more as rain
 Reduced snowpack

« Earlier breakup of winter ice on lakes and rivers

o Earlier spring snowmelt resulting in earlier peak river flows
 Rising sea surface temperatures and sea level

http://www.globalchange.gov/publications/reports/scientific-assessments/us-
impacts/regional-climate-change-impacts/northeast



USGCRP Northeast.pdf (2009)

Over the next several decades, temperatures in the Northeast are
projected to rise an additional 2.5 to 4°F in winter and 1.5 to 3.5°F in
summer.

By mid-century and beyond, however, today’s emissions choices
would generate starkly different climate futures; the lower the
emissions, the smaller the climatic changes and resulting impacts.

By late this century, under a higher emissions scenario:

Winters in the Northeast are projected to be much shorter with fewer cold days
and more precipitation.

The length of the winter snow season would be cut in half across northern New
York, Vermont, New Hampshire, and Maine, and reduced to a week or two in
southern parts of the region.

Cities that today experience few days above 100°F each summer would average
20 such days per summer, while certain cities, such as Hartford and
Philadelphia, would average nearly 30 days over 100°F.

Short-term (one- to three-month) droughts are projected to occur as frequently
as once each summer in the Catskill and Adirondack Mountains, and across
the New England states.

Hot summer conditions would arrive three weeks earlier and last three weeks
longer into the fall.

Sea level in this region is projected to rise more than the global average



Climate Model Predictions

Temperature A1B: 2080-2099 A B: 2(_)_8-2099 DJF

DJF Precipitatigr_'l_
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