Vermont Climate Change Indicators

Dr. Alan K. Betts

Atmospheric Research, Pittsford, VT 05763

http://alanbetts.com

"Communicating Earth Science Information"

American Meteorological Society

Seattle, WA

January 27, 2011

Climate Change

- One of the great challenges for 21st C
- Global issue & local issue; societal & personal issue
- Clash of Earth science & social values

• How do we deepen public understanding? [NOT: how do we communicate to public!]

Strategy

Public Issues:

- Global changes are beyond direct experience
- Complex models for future limited credibility
- Scientific literature is unintelligible jargon

Instead

- Identify and describe what is happening locally, to link direct perception & collective experience of local communities with global picture
- Deepens community understanding and acceptance of the reality of climate change
- Provides conceptual basis for adaptation planning

What is happening to New England? –*Vermont!*

- Local climate change indicators
- Easier to grasp than global view

- Warming twice as fast in winter than summer
- Winter severity decreasing
- Lakes frozen less by 7 days/decade
- Growing season longer 3.7 days/decade
- Spring earlier by 2-3 days per decade

Annual Cycle of Temperature

• Warm and cold seasons (frost) comparable in length

• Shift of +1°C relative to freezing is significant

Vermont temperature trends

- Warming twice as fast in winter than summer
- summer +0.23°C (0.4°F)/decade
- winter $+0.5^{\circ}$ C $(0.9^{\circ}F)$ /decade

NASA-GISS, 2011

First & last frosts changing

- Growing season for frost-sensitive plants increasing 3.7 days/decade
- Large interannual variability

Lake freeze-up & Ice-out changing –

frozen period shrinking fast

- Ice-out earlier 3 days/decade
- Freeze-up later 4 days/decade

Interannual variability of Ice-out related to Feb-Mar-Apr temperatures

 Ice-out changes by -4.2±0.5 days/°C

• T_{wt} is weighted Feb-Mar-Apr temperature derived from multiple linear regression

Feedbacks are accelerating Arctic sea-ice loss

Feedbacks - speed melting

-less ice, less sunlight reflected

-more evaporation, larger water vapor greenhouse

(www.nsidc.org)

• Open water in October contributes to warmer Fall in New England

USDA Hardiness Zones - Northeast

Gardening in Pittsford, VT in January

Jan 7, 2007

December, 2006, warmest on record

[since 1894]

Jan 10, 2008

Warm Fall, record Arctic sea-ice melt
Snow cover in December, ground unfrozen

Lilac leaf and bloom in spring

- Leaf-out trend: -3 days/decade
- Bloom trend: -1.5 days/decade
- Leaf & bloom dates change by 4 to 5 days/°C

Lilac leaf-out and Ice-out coupled

- Lilac leaf and lake ice-out depend on Feb-Mar-Apr temperatures
- Both indicate trend to earlier spring

Maples and Lilacs in spring

- Maple bud elongation mirrors lilac leaf-out
- Maple leaf-out mirrors lilac bloom

Conclusions

- Coherent picture of shrinking of winter 'frozen' season by 7 days/decade and lengthening of growing season
- Ice-out and spring phenology linked
- Observables familiar to VT communities deepen understanding and acceptance of the reality of climate change
- Provide a basis for community discussion and adaptation planning [with hydrologic indices]